Suppr超能文献

丘吉尔:一种超快速、确定性、高度可扩展且平衡的并行化策略,用于在临床和群体规模基因组学中发现人类遗传变异。

Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.

作者信息

Kelly Benjamin J, Fitch James R, Hu Yangqiu, Corsmeier Donald J, Zhong Huachun, Wetzel Amy N, Nordquist Russell D, Newsom David L, White Peter

机构信息

Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus 43205, OH, USA.

Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA.

出版信息

Genome Biol. 2015 Jan 20;16(1):6. doi: 10.1186/s13059-014-0577-x.

Abstract

While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

摘要

虽然基因组测序技术的进步使大规模群体基因组学成为可能,但目前分析这些数据的方法依赖于并行化策略,这些策略扩展性有限、实施复杂且缺乏可重复性。Churchill是一种平衡的区域并行化策略,它克服了这些挑战,将从原始测序读数到变异发现所需的多个步骤完全自动化。通过实施新颖的确定性并行化技术,Churchill能够在不到两小时内对高深度全基因组样本进行高效计算分析。该方法具有高度可扩展性,使用云资源一周内就能对千人基因组原始序列数据集进行全面分析。http://churchill.nchri.org/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c1/4333267/51cb6ab9bfd3/13059_2014_577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验