Hohn Maryann E, Li Bo, Yang Weihua
Department of Mathematics, University of Connecticut, Storrs, 196 Auditorium Road, Unit 3009, Storrs, CT 06269-3009, USA.
Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112, USA.
J Math Anal Appl. 2015 May 1;425(1):212-233. doi: 10.1016/j.jmaa.2014.12.028.
We consider a system of coupled reaction-diffusion equations that models the interaction between multiple types of chemical species, particularly the interaction between one messenger RNA and different types of non-coding microRNAs in biological cells. We construct various modeling systems with different levels of complexity for the reaction, nonlinear diffusion, and coupled reaction and diffusion of the RNA interactions, respectively, with the most complex one being the full coupled reaction-diffusion equations. The simplest system consists of ordinary differential equations (ODE) modeling the chemical reaction. We present a derivation of this system using the chemical master equation and the mean-field approximation, and prove the existence, uniqueness, and linear stability of equilibrium solution of the ODE system. Next, we consider a single, nonlinear diffusion equation for one species that results from the slow diffusion of the others. Using variational techniques, we prove the existence and uniqueness of solution to a boundary-value problem of this nonlinear diffusion equation. Finally, we consider the full system of reaction-diffusion equations, both steady-state and time-dependent. We use the monotone method to construct iteratively upper and lower solutions and show that their respective limits are solutions to the reaction-diffusion system. For the time-dependent system of reaction-diffusion equations, we obtain the existence and uniqueness of global solutions. We also obtain some asymptotic properties of such solutions.
我们考虑一个耦合反应扩散方程组,该方程组对多种化学物质之间的相互作用进行建模,特别是生物细胞中一种信使核糖核酸(mRNA)与不同类型非编码微小核糖核酸(miRNA)之间的相互作用。我们分别针对RNA相互作用的反应、非线性扩散以及耦合反应与扩散构建了具有不同复杂程度的各种建模系统,其中最复杂的是完全耦合反应扩散方程。最简单的系统由对化学反应进行建模的常微分方程(ODE)组成。我们使用化学主方程和平均场近似对该系统进行了推导,并证明了ODE系统平衡解的存在性、唯一性和线性稳定性。接下来,我们考虑由其他物质的缓慢扩散产生的针对一种物质的单个非线性扩散方程。使用变分技术,我们证明了该非线性扩散方程边值问题解的存在性和唯一性。最后,我们考虑反应扩散方程的完整系统,包括稳态和与时间相关的情况。我们使用单调方法迭代地构造上解和下解,并表明它们各自的极限是反应扩散系统的解。对于与时间相关的反应扩散方程组,我们得到了全局解的存在性和唯一性。我们还得到了此类解的一些渐近性质。