Suppr超能文献

RNA相互作用的耦合反应-扩散方程分析

Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions.

作者信息

Hohn Maryann E, Li Bo, Yang Weihua

机构信息

Department of Mathematics, University of Connecticut, Storrs, 196 Auditorium Road, Unit 3009, Storrs, CT 06269-3009, USA.

Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112, USA.

出版信息

J Math Anal Appl. 2015 May 1;425(1):212-233. doi: 10.1016/j.jmaa.2014.12.028.

Abstract

We consider a system of coupled reaction-diffusion equations that models the interaction between multiple types of chemical species, particularly the interaction between one messenger RNA and different types of non-coding microRNAs in biological cells. We construct various modeling systems with different levels of complexity for the reaction, nonlinear diffusion, and coupled reaction and diffusion of the RNA interactions, respectively, with the most complex one being the full coupled reaction-diffusion equations. The simplest system consists of ordinary differential equations (ODE) modeling the chemical reaction. We present a derivation of this system using the chemical master equation and the mean-field approximation, and prove the existence, uniqueness, and linear stability of equilibrium solution of the ODE system. Next, we consider a single, nonlinear diffusion equation for one species that results from the slow diffusion of the others. Using variational techniques, we prove the existence and uniqueness of solution to a boundary-value problem of this nonlinear diffusion equation. Finally, we consider the full system of reaction-diffusion equations, both steady-state and time-dependent. We use the monotone method to construct iteratively upper and lower solutions and show that their respective limits are solutions to the reaction-diffusion system. For the time-dependent system of reaction-diffusion equations, we obtain the existence and uniqueness of global solutions. We also obtain some asymptotic properties of such solutions.

摘要

我们考虑一个耦合反应扩散方程组,该方程组对多种化学物质之间的相互作用进行建模,特别是生物细胞中一种信使核糖核酸(mRNA)与不同类型非编码微小核糖核酸(miRNA)之间的相互作用。我们分别针对RNA相互作用的反应、非线性扩散以及耦合反应与扩散构建了具有不同复杂程度的各种建模系统,其中最复杂的是完全耦合反应扩散方程。最简单的系统由对化学反应进行建模的常微分方程(ODE)组成。我们使用化学主方程和平均场近似对该系统进行了推导,并证明了ODE系统平衡解的存在性、唯一性和线性稳定性。接下来,我们考虑由其他物质的缓慢扩散产生的针对一种物质的单个非线性扩散方程。使用变分技术,我们证明了该非线性扩散方程边值问题解的存在性和唯一性。最后,我们考虑反应扩散方程的完整系统,包括稳态和与时间相关的情况。我们使用单调方法迭代地构造上解和下解,并表明它们各自的极限是反应扩散系统的解。对于与时间相关的反应扩散方程组,我们得到了全局解的存在性和唯一性。我们还得到了此类解的一些渐近性质。

相似文献

5
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.稳态泊松-能斯特-普朗克系统的奇异摄动解
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022722. doi: 10.1103/PhysRevE.89.022722. Epub 2014 Feb 26.

本文引用的文献

1
Competition between small RNAs: a quantitative view.小 RNA 之间的竞争:一种定量的观点。
Biophys J. 2012 Apr 18;102(8):1712-21. doi: 10.1016/j.bpj.2012.01.058.
2
Regulation by small RNAs via coupled degradation: mean-field and variational approaches.小RNA通过偶联降解进行的调控:平均场和变分方法
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021928. doi: 10.1103/PhysRevE.84.021928. Epub 2011 Aug 25.
3
Activation of gene expression by small RNA.小 RNA 对基因表达的激活作用。
Curr Opin Microbiol. 2009 Dec;12(6):674-82. doi: 10.1016/j.mib.2009.09.009. Epub 2009 Oct 31.
4
Small RNAs establish gene expression thresholds.小RNA确立基因表达阈值。
Curr Opin Microbiol. 2008 Dec;11(6):574-9. doi: 10.1016/j.mib.2008.09.016. Epub 2008 Nov 18.
5
Small non-coding RNAs in animal development.动物发育中的小非编码RNA
Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30. doi: 10.1038/nrm2347.
6
8
Quantitative characteristics of gene regulation by small RNA.小RNA对基因调控的定量特征
PLoS Biol. 2007 Sep;5(9):e229. doi: 10.1371/journal.pbio.0050229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验