Suppr超能文献

神经形态事件驱动的精确计时能为基于尖峰的模式识别增添什么?

What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

作者信息

Akolkar Himanshu, Meyer Cedric, Clady Zavier, Marre Olivier, Bartolozzi Chiara, Panzeri Stefano, Benosman Ryad

机构信息

iCub Facility, Istituto Italiano di Tecnologia, Genoa 16163, Italy

出版信息

Neural Comput. 2015 Mar;27(3):561-93. doi: 10.1162/NECO_a_00703. Epub 2015 Jan 20.

Abstract

This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

摘要

这封信介绍了一项研究,旨在精确测量尖峰时间精度的提高能为基于尖峰的模式识别算法带来什么。通过将灰度转换为尖峰时间从图像生成尖峰的概念,目前几乎是生物视觉系统每一种基于尖峰的建模的基础。使用图像自然会导致产生不正确的人工和冗余尖峰时间,更重要的是,这也与生物学研究结果相矛盾,该结果表明视觉处理是大规模并行、具有高时间分辨率的异步处理。最近一代的异步神经形态视觉传感器提出了一种通过像素个体异步电平交叉采样获取视觉信息的新概念。与传统相机不同,这些传感器不是在整个阵列的固定时间点获取数据,而是在其输入的固定幅度变化时获取数据,从而在空间和时间上实现最优稀疏——仅在有新的(以前未知的)信息可用时(基于事件),像素才会单独且精确地定时。这封信利用基于神经形态事件的视觉传感器的高时间分辨率尖峰输出表明,降低时间精度会降低几种识别任务的性能,特别是在达到传统机器视觉采集频率范围(30 - 60赫兹)时。使用信息论来表征每个时间分辨率下类之间的可分离性表明,高时间分辨率采集提供的信息比标准人工视觉中基于帧的采集所生成的传统尖峰多70%,从而大大提高了物体类之间的可分离性。对真实数据的实验表明,信息损失量与时间精度相关。我们的信息论研究突出了神经形态异步视觉传感器在实际应用和理论研究方面的潜力。此外,它表明,如视网膜中所报告的那样,将视觉信息表示为精确的尖峰时间序列,对于受神经启发的视觉计算具有相当大的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验