Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, Vargas-Berenguel A, Semiramoth N, Daoud-Mahammed S, Nicolas V, Martineau C, Taulelle F, Vigneron J, Etcheberry A, Serre C, Gref R
Institut Galien, Université Paris-Sud, UMR CNRS 8612, 92290 Chatenay Malabry, France.
Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035Versailles, France.
Sci Rep. 2015 Jan 21;5:7925. doi: 10.1038/srep07925.
Nanoparticles made of metal-organic frameworks (nanoMOFs) attract a growing interest in gas storage, separation, catalysis, sensing and more recently, biomedicine. Achieving stable, versatile coatings on highly porous nanoMOFs without altering their ability to adsorb molecules of interest represents today a major challenge. Here we bring the proof of concept that the outer surface of porous nanoMOFs can be specifically functionalized in a rapid, biofriendly and non-covalent manner, leading to stable and versatile coatings. Cyclodextrin molecules bearing strong iron complexing groups (phosphates) were firmly anchored to the nanoMOFs' surface, within only a few minutes, simply by incubation with aqueous nanoMOF suspensions. The coating procedure did not affect the nanoMOF porosity, crystallinity, adsorption and release abilities. The stable cyclodextrin-based coating was further functionalized with: i) targeting moieties to increase the nanoMOF interaction with specific receptors and ii) poly(ethylene glycol) chains to escape the immune system. These results pave the way towards the design of surface-engineered nanoMOFs of interest for applications in the field of targeted drug delivery, catalysis, separation and sensing.
由金属有机框架制成的纳米颗粒(nanoMOF)在气体存储、分离、催化、传感以及最近的生物医学领域引起了越来越多的关注。在高度多孔的nanoMOF上实现稳定、通用的涂层,同时又不改变其吸附目标分子的能力,是目前面临的一项重大挑战。在此,我们提供了概念验证,即多孔nanoMOF的外表面可以通过快速、生物友好且非共价的方式进行特异性功能化,从而形成稳定且通用的涂层。带有强铁络合基团(磷酸盐)的环糊精分子仅通过与纳米金属有机框架的水悬浮液孵育几分钟,就能牢固地锚定在nanoMOF的表面。涂层过程并未影响nanoMOF的孔隙率、结晶度、吸附和释放能力。稳定的基于环糊精的涂层进一步用以下物质进行功能化:i)靶向部分,以增加nanoMOF与特定受体的相互作用;ii)聚乙二醇链,以逃避免疫系统。这些结果为设计用于靶向药物递送、催化、分离和传感领域的表面工程化nanoMOF铺平了道路。