Yu Zhihao, Lepoitevin Mathilde, Serre Christian
Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France.
Adv Healthc Mater. 2025 Mar;14(8):e2402630. doi: 10.1002/adhm.202402630. Epub 2024 Oct 10.
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
在过去二十年中,铁基金属有机框架(Fe-MOFs)因其低毒性、可调节的降解性、巨大的药物负载能力、多样的结构和多模态功能而在生物医学领域引起了广泛的研究兴趣。尽管它们具有巨大潜力,但基于Fe-MOFs的复合材料从实验室研究向临床产品的转化仍然具有挑战性。本综述评估了Fe-MOFs与其他MOFs不同的关键特性,并强调了合成路线、表面工程和成型技术方面的最新进展。特别是,重点介绍了它们在生物传感、抗菌和抗癌治疗中的应用。此外,该综述强调需要开发可扩展、环境友好且具有成本效益的生产方法来制备更多的Fe-MOFs,以满足各种生物医学应用的特定要求。尽管基于Fe-MOFs的复合材料具有联合治疗的能力,但仍然存在重大障碍,包括需要更深入地了解其治疗机制以及耐药性和过量使用的潜在风险。系统地应对这些挑战可以显著提高Fe-MOFs在生物医学中的前景,并有可能促进它们融入主流临床实践。