Suppr超能文献

用于肌腱再生的新型非桑蚕丝支架的体外评估

In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration.

作者信息

Musson David S, Naot Dorit, Chhana Ashika, Matthews Brya G, McIntosh Julie D, Lin Sandy T C, Choi Ally J, Callon Karen E, Dunbar P Rod, Lesage Stephanie, Coleman Brendan, Cornish Jillian

机构信息

1 Department of Medicine, The University of Auckland , Auckland, New Zealand .

出版信息

Tissue Eng Part A. 2015 May;21(9-10):1539-51. doi: 10.1089/ten.TEA.2014.0128. Epub 2015 Mar 10.

Abstract

Tearing of the rotator cuff tendon in the shoulder is a significant clinical problem, with large/full-thickness tears present in ∼22% of the general population and recurrent tear rates postarthroscopic repair being quoted as high as 94%. Tissue-engineered biomaterials are increasingly being investigated as a means to augment rotator cuff repairs, with the aim of inducing host cell responses to increase tendon tissue regeneration. Silk-derived materials are of particular interest due to the high availability, mechanical strength, and biocompatibility of silks. In this study, Spidrex(®), a novel knitted, non-mulberry silk fibroin scaffold was evaluated in vitro for its potential to improve tendon regeneration. Spidrex was compared with a knitted Bombyx mori silk scaffold, a 3D collagen gel and Fiberwire(®) suture material. Primary human and rat tenocytes successfully adhered to Spidrex and significantly increased in number over a 14 day period (p<0.05), as demonstrated by fluorescent calcein-AM staining and alamarBlue(®) assays. A similar growth pattern was observed with human tenocytes cultured on the B. mori scaffold. Morphologically, human tenocytes elongated along the silk fibers of Spidrex, assuming a tenocytic cell shape, and were less circular with a higher aspect ratio compared with human tenocytes cultured on the B. mori silk scaffold and within the collagen gel (p<0.05). Gene expression analysis by real-time PCR showed that rat tenocytes cultured on Spidrex had increased expression of tenocyte-related genes such as fibromodullin, scleraxis, and tenomodulin (p<0.05). Expression of genes that indicate transdifferentiation toward a chondrocytic or osteoblastic lineage were significantly lower in tenocytes cultured on Spidrex in comparison to the collagen gel (p<0.05). Immunogenicity assessment by the maturation of and cytokine release from primary human dendritic cells demonstrated that Spidrex enhanced dendritic cell maturation in a similar manner to the clinically used suture material Fiberwire, and significantly upregulated the release of proinflammatory cytokines (p<0.05). This suggests that Spidrex may induce an early immune response postimplantation. While further work is required to determine what effect this immune response has on the tendon healing process, our in vitro data suggests that Spidrex may have the cytocompatibility and bioactivity required to support tendon regeneration in vivo.

摘要

肩部肩袖肌腱撕裂是一个严重的临床问题,普通人群中约22%存在大/全层撕裂,关节镜修复后的复发撕裂率高达94%。组织工程生物材料作为增强肩袖修复的一种手段,正受到越来越多的研究,目的是诱导宿主细胞反应以促进肌腱组织再生。由于丝绸具有高可用性、机械强度和生物相容性,源自丝绸的材料尤其受到关注。在本研究中,对一种新型针织非桑蚕丝素蛋白支架Spidrex(®)进行了体外评估,以确定其改善肌腱再生的潜力。将Spidrex与针织家蚕丝支架、3D胶原凝胶和Fiberwire(®)缝合材料进行了比较。原代人及大鼠肌腱细胞成功黏附于Spidrex,并在14天内数量显著增加(p<0.05),荧光钙黄绿素-AM染色和alamarBlue(®)检测证实了这一点。在桑蚕丝支架上培养的人肌腱细胞也观察到类似的生长模式。形态学上,人肌腱细胞沿着Spidrex的丝纤维伸长,呈现出肌腱细胞的形状,与在桑蚕丝支架和胶原凝胶中培养的人肌腱细胞相比,其圆形程度更低,纵横比更高(p<0.05)。通过实时PCR进行的基因表达分析表明,在Spidrex上培养的大鼠肌腱细胞中,肌腱细胞相关基因如纤维调节蛋白、硬骨素和肌腱调节蛋白的表达增加(p<0.05)。与胶原凝胶相比,在Spidrex上培养的肌腱细胞中,向软骨细胞或成骨细胞谱系转分化的基因表达显著降低(p<0.05)。通过原代人树突状细胞的成熟和细胞因子释放进行的免疫原性评估表明,Spidrex以与临床使用的缝合材料Fiberwire类似的方式增强树突状细胞成熟,并显著上调促炎细胞因子的释放(p<0.05)。这表明Spidrex可能在植入后诱导早期免疫反应。虽然需要进一步研究来确定这种免疫反应对肌腱愈合过程有何影响,但我们的体外数据表明,Spidrex可能具有支持体内肌腱再生所需的细胞相容性和生物活性。

相似文献

1
In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration.
Tissue Eng Part A. 2015 May;21(9-10):1539-51. doi: 10.1089/ten.TEA.2014.0128. Epub 2015 Mar 10.
2
Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair.
Acta Biomater. 2017 Mar 15;51:317-329. doi: 10.1016/j.actbio.2017.01.041. Epub 2017 Jan 16.
4
Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair.
Cell Transplant. 2012;21(5):943-58. doi: 10.3727/096368911X627453. Epub 2012 Mar 8.
6
Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration.
Adv Healthc Mater. 2015 Aug 5;4(11):1709-21. doi: 10.1002/adhm.201500283. Epub 2015 Jun 17.
7
Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
Biomed Mater. 2017 Jul 24;12(4):045012. doi: 10.1088/1748-605X/aa7697.
9
10
Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering.
Proc Inst Mech Eng H. 2017 Jul;231(7):652-662. doi: 10.1177/0954411917697751. Epub 2017 Mar 28.

引用本文的文献

1
Could an Anterior Cruciate Ligament Be Tissue-Engineered from Silk?
Cells. 2023 Sep 25;12(19):2350. doi: 10.3390/cells12192350.
2
Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo.
Stem Cell Res Ther. 2023 Apr 26;14(1):104. doi: 10.1186/s13287-023-03329-0.
3
Biomedical applications of silk and its role for intervertebral disc repair.
JOR Spine. 2022 Oct 6;5(4):e1225. doi: 10.1002/jsp2.1225. eCollection 2022 Dec.
4
Cytotoxicity of tranexamic acid to tendon and bone in vitro: Is there a safe dosage?
J Orthop Surg Res. 2022 May 15;17(1):273. doi: 10.1186/s13018-022-03167-5.
5
Evolutionary approaches in protein engineering towards biomaterial construction.
RSC Adv. 2019 Oct 29;9(60):34720-34734. doi: 10.1039/c9ra06807d. eCollection 2019 Oct 28.
6
Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments.
Bioact Mater. 2022 Apr 13;19:179-197. doi: 10.1016/j.bioactmat.2022.04.003. eCollection 2023 Jan.
7
Changes in Physiological Tendon Substrate Stiffness Have Moderate Effects on Tendon-Derived Cell Growth and Immune Cell Activation.
Front Bioeng Biotechnol. 2022 Feb 28;10:800748. doi: 10.3389/fbioe.2022.800748. eCollection 2022.
10
Interplay of Forces and the Immune Response for Functional Tendon Regeneration.
Front Cell Dev Biol. 2021 Jun 4;9:657621. doi: 10.3389/fcell.2021.657621. eCollection 2021.

本文引用的文献

2
Silk and collagen scaffolds for tendon reconstruction.
Proc Inst Mech Eng H. 2014 Apr;228(4):388-96. doi: 10.1177/0954411914528890. Epub 2014 Apr 4.
3
Augmentation of tendon-to-bone healing.
J Bone Joint Surg Am. 2014 Mar 19;96(6):513-21. doi: 10.2106/JBJS.M.00009.
4
Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village.
J Orthop. 2013 Feb 26;10(1):8-12. doi: 10.1016/j.jor.2013.01.008. eCollection 2013.
6
In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering.
J Tissue Eng Regen Med. 2016 Mar;10(3):E216-26. doi: 10.1002/term.1791. Epub 2013 Aug 29.
7
Synthetic and degradable patches: an emerging solution for rotator cuff repair.
Int J Exp Pathol. 2013 Aug;94(4):287-92. doi: 10.1111/iep.12030.
8
An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini.
Macromol Biosci. 2013 Aug;13(8):1020-35. doi: 10.1002/mabi.201300013. Epub 2013 Jun 3.
9
Functional attachment of soft tissues to bone: development, healing, and tissue engineering.
Annu Rev Biomed Eng. 2013;15:201-26. doi: 10.1146/annurev-bioeng-071910-124656. Epub 2013 Apr 29.
10
Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells.
Tissue Eng Part A. 2013 Jun;19(11-12):1360-72. doi: 10.1089/ten.TEA.2012.0279. Epub 2013 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验