Suppr超能文献

RNA聚合酶II绕过氧化性环嘌呤DNA损伤的机制。

Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions.

作者信息

Walmacq Celine, Wang Lanfeng, Chong Jenny, Scibelli Kathleen, Lubkowska Lucyna, Gnatt Averell, Brooks Philip J, Wang Dong, Kashlev Mikhail

机构信息

Center for Cancer Research, National Cancer Institute, Frederick, MD 21702;

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093;

出版信息

Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E410-9. doi: 10.1073/pnas.1415186112. Epub 2015 Jan 20.

Abstract

In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5'-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. Thus, the translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, translesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.

摘要

在人类细胞中,氧化性DNA损伤8,5'-环-2'-脱氧腺苷(CydA)会导致RNA聚合酶II(Pol II)长时间停滞,随后发生转录绕过,产生无错误和突变的转录本,在损伤位点紧邻的下游会错误掺入AMP。在此,我们提供了关于CydA识别机制的生化和晶体学证据。Pol II停滞是由于CydA旁边的模板碱基(5')加载到活性位点受损,导致优先错误掺入AMP。这种主要的AMP插入,在无碱基位点也会发生,不受5'-模板碱基身份的影响,表明它源于根据DNA聚合酶已知的A规则且最近在Pol II绕过嘧啶二聚体过程中确定的非模板合成。在错误掺入AMP之后,Pol II遇到一个主要的易位障碍,该障碍会被缓慢克服。因此,易位障碍与dA.rA错配的较差延伸相结合,减少了转录诱变。此外,通过触发环突变增加活性位点的灵活性,这增加了Pol II容纳大体积损伤的能力,以及添加反式作用因子TFIIF,促进了CydA的绕过。因此,阻止损伤进入活性位点、跨损伤A规则合成和易位障碍是转录跨越不同大体积DNA损伤的共同特征。

相似文献

1
Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E410-9. doi: 10.1073/pnas.1415186112. Epub 2015 Jan 20.
2
Mechanism of transcriptional stalling at cisplatin-damaged DNA.
Nat Struct Mol Biol. 2007 Dec;14(12):1127-33. doi: 10.1038/nsmb1314. Epub 2007 Nov 11.
3
Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):E2538-E2545. doi: 10.1073/pnas.1722050115. Epub 2018 Feb 27.
4
RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9338-9348. doi: 10.1073/pnas.1919904117. Epub 2020 Apr 13.
5
Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7082-E7091. doi: 10.1073/pnas.1708748114. Epub 2017 Aug 7.
7
Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells.
EMBO Rep. 2007 Apr;8(4):388-93. doi: 10.1038/sj.embor.7400932. Epub 2007 Mar 16.
8
CPD damage recognition by transcribing RNA polymerase II.
Science. 2007 Feb 9;315(5813):859-62. doi: 10.1126/science.1135400.
10
DNA photodamage recognition by RNA polymerase II.
FEBS Lett. 2007 Jun 19;581(15):2757-60. doi: 10.1016/j.febslet.2007.05.014. Epub 2007 May 11.

引用本文的文献

1
Transcription-Coupled Nucleotide Excision Repair: A Faster Solution or the Only Option?
Biomolecules. 2025 Jul 16;15(7):1026. doi: 10.3390/biom15071026.
2
Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders.
Antioxidants (Basel). 2025 May 11;14(5):578. doi: 10.3390/antiox14050578.
3
Keep calm and reboot - how cells restart transcription after DNA damage and DNA repair.
FEBS Lett. 2025 Jan;599(2):275-294. doi: 10.1002/1873-3468.14964. Epub 2024 Jul 11.
4
Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis.
J Mol Biol. 2024 Jul 1;436(13):168618. doi: 10.1016/j.jmb.2024.168618. Epub 2024 May 18.
5
Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy·dG.
J Am Chem Soc. 2024 Mar 6;146(9):6274-6282. doi: 10.1021/jacs.3c14476. Epub 2024 Feb 23.
6
Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases.
Front Cell Neurosci. 2022 Jun 30;16:852002. doi: 10.3389/fncel.2022.852002. eCollection 2022.
7
Structural advances in transcription elongation.
Curr Opin Struct Biol. 2022 Aug;75:102422. doi: 10.1016/j.sbi.2022.102422. Epub 2022 Jul 9.
10
Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair.
DNA Repair (Amst). 2022 Jan;109:103258. doi: 10.1016/j.dnarep.2021.103258. Epub 2021 Nov 24.

本文引用的文献

1
Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1823-32. doi: 10.1073/pnas.1401182111. Epub 2014 Apr 22.
2
Millisecond dynamics of RNA polymerase II translocation at atomic resolution.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7665-70. doi: 10.1073/pnas.1315751111. Epub 2014 Apr 21.
3
Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6642-7. doi: 10.1073/pnas.1405181111. Epub 2014 Apr 14.
4
Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis.
J Am Chem Soc. 2013 Sep 4;135(35):13054-61. doi: 10.1021/ja405475y. Epub 2013 Aug 25.
5
A quantitative assay for assessing the effects of DNA lesions on transcription.
Nat Chem Biol. 2012 Oct;8(10):817-22. doi: 10.1038/nchembio.1046.
6
The oxidative DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner.
Aging Cell. 2012 Aug;11(4):714-6. doi: 10.1111/j.1474-9726.2012.00828.x. Epub 2012 May 22.
7
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage.
Mol Cell. 2012 Apr 13;46(1):18-29. doi: 10.1016/j.molcel.2012.02.006. Epub 2012 Mar 8.
8
Transcriptional mutagenesis: causes and involvement in tumour development.
Nat Rev Cancer. 2011 Mar;11(3):218-27. doi: 10.1038/nrc3006.
9
X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9584-9. doi: 10.1073/pnas.1002565107. Epub 2010 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验