Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0625.
Department of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7082-E7091. doi: 10.1073/pnas.1708748114. Epub 2017 Aug 7.
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, interfere with the efficiency and accuracy of DNA replication and transcription. However, the molecular mechanisms of DNA alkylation-induced transcriptional stalling and mutagenesis remain unknown. In this study, we systematically investigated how RNA polymerase II (pol II) recognizes and bypasses regioisomeric -, 3-, and -ethylthymidine (-, 3-, and -EtdT) lesions. We observed distinct pol II stalling profiles for the three regioisomeric EtdT lesions. Intriguingly, pol II stalling at -EtdT and 3-EtdT sites is exacerbated by TFIIS-stimulated proofreading activity. Assessment for the impact of the EtdT lesions on individual fidelity checkpoints provided further mechanistic insights, where the transcriptional lesion bypass routes for the three EtdT lesions are controlled by distinct fidelity checkpoints. The error-free transcriptional lesion bypass route is strongly favored for the minor-groove -EtdT lesion. In contrast, a dominant error-prone route stemming from GMP misincorporation was observed for the major-groove -EtdT lesion. For the 3-EtdT lesion that disrupts base pairing, multiple transcriptional lesion bypass routes were found. Importantly, the results from the present in vitro transcriptional studies are well correlated with in vivo transcriptional mutagenesis analysis. Finally, we identified a minor-groove-sensing motif from pol II (termed Pro-Gate loop). The Pro-Gate loop faces toward the minor groove of RNA:DNA hybrid and is involved in modulating the translocation of minor-groove alkylated DNA template after nucleotide incorporation opposite the lesion. Taken together, this work provides important mechanistic insights into transcriptional stalling, lesion bypass, and mutagenesis of alkylated DNA lesions.
烷基化 DNA 损伤,由外源性化学试剂和内源性代谢物共同诱导,会干扰 DNA 复制和转录的效率和准确性。然而,DNA 烷化诱导转录停滞和突变的分子机制仍不清楚。在这项研究中,我们系统地研究了 RNA 聚合酶 II(pol II)如何识别和绕过区域异构的-、3-和-β-乙基胸腺嘧啶(-、3-和-β-EtdT)损伤。我们观察到三种区域异构的 EtdT 损伤导致 pol II 明显的停滞特征。有趣的是,TFIIS 刺激的校对活性加剧了-β-EtdT 和 3-EtdT 位点的 pol II 停滞。对 EtdT 损伤对个别保真度检查点的影响进行评估,提供了进一步的机制见解,其中三种 EtdT 损伤的转录损伤绕过途径由不同的保真度检查点控制。对于 minor-groove-β-EtdT 损伤,强烈偏好无错误的转录损伤绕过途径。相比之下,对于 major-groove-β-EtdT 损伤,观察到源自 GMP 错误掺入的主导易错途径。对于破坏碱基配对的 3-EtdT 损伤,发现了多种转录损伤绕过途径。重要的是,本研究中的体外转录研究结果与体内转录诱变分析高度相关。最后,我们从 pol II 中鉴定出一个 minor-groove 感应基序(称为 Pro-Gate 环)。Pro-Gate 环面向 RNA:DNA 杂交的 minor-groove,参与调节核苷酸掺入损伤后 minor-groove 烷基化 DNA 模板的易位。总之,这项工作为烷基化 DNA 损伤的转录停滞、损伤绕过和突变提供了重要的机制见解。