Suppr超能文献

动力冲程与化学驱动分子机器的方向性、制动力及最佳效率无关。

Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.

作者信息

Astumian R Dean

机构信息

Department of Physics, University of Maine, Orono, Maine.

出版信息

Biophys J. 2015 Jan 20;108(2):291-303. doi: 10.1016/j.bpj.2014.11.3459.

Abstract

A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters.

摘要

一个化学驱动分子行走器的简单模型表明,分子储存并在被称为动力冲程的构象变化过程中释放的弹性能量(即动力冲程前后状态之间的自由能差)与确定分子马达的方向性、制动力和效率无关。此外,动力冲程的正向和反向速率常数(或实际上所有速率常数)对外加力的依赖性分配,对于确定分子马达的方向性、制动力和效率也无关紧要。基于微观可逆性原理的论证表明,这一结果对于所有化学驱动的分子机器都是普遍适用的,甚至更广泛地说,分子马达各状态的相对能量在决定分子机器的方向性、制动力或最佳效率方面不起作用。相反,方向性、制动力和最佳效率仅由各状态之间能垒的相对高度决定。分子识别——分子机器根据其自身状态区分底物和产物的能力——对于确定化学机械耦合的固有方向性和热力学而言,远比分子机器内部机械构象运动的细节重要得多。与化学驱动的结论相反,动力冲程对于光驱动分子机器以及由热力学参数的外部调制驱动的分子机器的方向性和效率非常重要。

相似文献

2
The Physics and Physical Chemistry of Molecular Machines.
Chemphyschem. 2016 Jun 17;17(12):1719-41. doi: 10.1002/cphc.201600184. Epub 2016 Jun 15.
3
Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility.
Acc Chem Res. 2018 Nov 20;51(11):2653-2661. doi: 10.1021/acs.accounts.8b00253. Epub 2018 Oct 11.
5
Optical vs. chemical driving for molecular machines.
Faraday Discuss. 2016 Dec 22;195:583-597. doi: 10.1039/c6fd00140h.
6
Insights from an information thermodynamics analysis of a synthetic molecular motor.
Nat Chem. 2022 May;14(5):530-537. doi: 10.1038/s41557-022-00899-z. Epub 2022 Mar 17.
7
Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems.
Angew Chem Int Ed Engl. 2024 Feb 26;63(9):e202306569. doi: 10.1002/anie.202306569. Epub 2024 Jan 18.
8
Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):050901. doi: 10.1103/PhysRevE.77.050901. Epub 2008 May 7.
9
Power-stroke-driven actomyosin contractility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012708. doi: 10.1103/PhysRevE.89.012708. Epub 2014 Jan 13.
10
Molecular dynamics simulation for the reversed power stroke motion of a myosin subfragment-1.
Biosystems. 2015 Jun;132-133:1-5. doi: 10.1016/j.biosystems.2015.04.001. Epub 2015 Apr 9.

引用本文的文献

2
Structural Influence of the Chemical Fueling System on a Catalysis-Driven Rotary Molecular Motor.
J Am Chem Soc. 2025 Mar 12;147(10):8785-8795. doi: 10.1021/jacs.5c00028. Epub 2025 Feb 27.
3
Transducing chemical energy through catalysis by an artificial molecular motor.
Nature. 2025 Jan;637(8046):594-600. doi: 10.1038/s41586-024-08288-x. Epub 2025 Jan 15.
4
Power Strokes in Molecular Motors: Predictive, Irrelevant, or Somewhere in Between?
J Am Chem Soc. 2025 Jan 8;147(1):1063-1073. doi: 10.1021/jacs.4c14481. Epub 2024 Dec 20.
6
Non-equilibrium Steady States in Catalysis, Molecular Motors, and Supramolecular Materials: Why Networks and Language Matter.
J Am Chem Soc. 2023 Jul 5;145(26):14169-14183. doi: 10.1021/jacs.2c12665. Epub 2023 Jun 21.
7
Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM.
Structure. 2023 Jan 5;31(1):4-19. doi: 10.1016/j.str.2022.11.014. Epub 2022 Dec 29.
8
Information flow, gating, and energetics in dimeric molecular motors.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2208083119. doi: 10.1073/pnas.2208083119. Epub 2022 Nov 7.
10
Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet.
J Am Chem Soc. 2022 Sep 21;144(37):17241-17248. doi: 10.1021/jacs.2c07633. Epub 2022 Sep 8.

本文引用的文献

1
Electrostatic origin of the unidirectionality of walking myosin V motors.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17326-31. doi: 10.1073/pnas.1317641110. Epub 2013 Oct 8.
2
Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7211-6. doi: 10.1073/pnas.1222257110. Epub 2013 Apr 15.
3
Force generation by kinesin and myosin cytoskeletal motor proteins.
J Cell Sci. 2013 Jan 1;126(Pt 1):9-19. doi: 10.1242/jcs.103911. Epub 2013 Mar 13.
4
Perspectives in chemistry--steps towards complex matter.
Angew Chem Int Ed Engl. 2013 Mar 4;52(10):2836-50. doi: 10.1002/anie.201208397. Epub 2013 Feb 18.
5
Microscopic reversibility as the organizing principle of molecular machines.
Nat Nanotechnol. 2012 Nov;7(11):684-8. doi: 10.1038/nnano.2012.188.
6
Fantastic voyage: designing self-powered nanorobots.
Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8434-45. doi: 10.1002/anie.201202044. Epub 2012 Aug 9.
7
How should we think about the ribosome?
Annu Rev Biophys. 2012;41:1-19. doi: 10.1146/annurev-biophys-050511-102314.
8
A three-compartment chemically-driven molecular information ratchet.
J Am Chem Soc. 2012 May 23;134(20):8321-3. doi: 10.1021/ja302711z. Epub 2012 May 8.
9
A structural perspective on the dynamics of kinesin motors.
Biophys J. 2011 Dec 7;101(11):2749-59. doi: 10.1016/j.bpj.2011.10.037.
10
Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5. doi: 10.1073/pnas.1117024108. Epub 2011 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验