Department of Chemistry, University of Southern California, 418 Seeley G. Mudd Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5. doi: 10.1073/pnas.1117024108. Epub 2011 Dec 5.
Understanding the nature of energy transduction in life processes requires a quantitative description of the energetics of the conversion of ATP to ADP by ATPases. Previous attempts to do so have provided an interesting insight but could not account for the rotary mechanism by a nonphenomenological structure/energy description. In particular it has been very challenging to account for the observations of the 80° and 40° rotational substates, without any prior information about such states in the simulation procedure. Here we use a coarse-grained model of F1-ATPase and generate, without the adjustment of phenomenological parameters, a structure-based free energy landscape that reproduces the energetics of the mechanochemical process. It is found that the landscape along the relevant rotary path is determined by the electrostatic free energy and not by steric effects. Furthermore, the generated surface and the corresponding Langevin dynamics simulations identify a hidden conformational barrier that provides a new fundamental interpretation of the catalytic dwell and illuminate the nature of the energy conversion process.
理解生命过程中能量转导的本质,需要对 ATP 酶将 ATP 转化为 ADP 的能量学进行定量描述。以前的尝试提供了一个有趣的见解,但无法通过非现象学的结构/能量描述来解释旋转机制。特别是,要解释 80°和 40°旋转亚基态的观察结果,而在模拟过程中没有关于这些状态的任何先验信息,这是非常具有挑战性的。在这里,我们使用 F1-ATP 酶的粗粒度模型,并在不调整现象学参数的情况下生成基于结构的自由能景观,该景观再现了机械化学过程的能量学。结果发现,沿相关旋转路径的景观由静电自由能决定,而不是由空间效应决定。此外,生成的表面和相应的朗之万动力学模拟确定了一个隐藏的构象障碍,为催化停留提供了新的基本解释,并阐明了能量转换过程的本质。