Suppr超能文献

分子机器的物理和物理化学。

The Physics and Physical Chemistry of Molecular Machines.

机构信息

Department of Physics, University of Maine, Orono, ME, 04469, USA.

Department of Chemistry, University of Southern California, Los Angeles, California, USA.

出版信息

Chemphyschem. 2016 Jun 17;17(12):1719-41. doi: 10.1002/cphc.201600184. Epub 2016 Jun 15.

Abstract

The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes.

摘要

“力促”(power stroke)——一种释放自由能的构象变化——的概念几乎出现在每一本涉及肌肉、鞭毛转子和许多其他生物分子机器的分子细节的教科书中。在这里,通过使用微观可逆性的约束条件表明,力促模型作为一种解释分子机器如何利用化学能来做功的解释是不正确的。相反,在反应物和产物浓度在本体中施加的热力学约束下运行的化学驱动分子机器作为信息棘轮起作用,其中方向性和停止扭矩或停止力完全由为机器提供燃料的化学反应的门控控制。化学自由能的门控通过分子机器的化学状态依赖的构象变化发生,这反过来又能够产生定向机械运动。与化学催化驱动的分子机器的这一普遍结论形成强烈对比的是,力促可能是(并且通常是)由 pH 或氧化还原电势或光的外部调制驱动的分子机器的一个重要组成部分。光学和化学驱动特性之间的这种差异源于光物理过程的基本对称性差异,该过程由玻色-爱因斯坦关系控制,以及热激活过程的微观可逆性约束。

相似文献

1
The Physics and Physical Chemistry of Molecular Machines.
Chemphyschem. 2016 Jun 17;17(12):1719-41. doi: 10.1002/cphc.201600184. Epub 2016 Jun 15.
3
Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility.
Acc Chem Res. 2018 Nov 20;51(11):2653-2661. doi: 10.1021/acs.accounts.8b00253. Epub 2018 Oct 11.
4
Optical vs. chemical driving for molecular machines.
Faraday Discuss. 2016 Dec 22;195:583-597. doi: 10.1039/c6fd00140h.
5
Insights from an information thermodynamics analysis of a synthetic molecular motor.
Nat Chem. 2022 May;14(5):530-537. doi: 10.1038/s41557-022-00899-z. Epub 2022 Mar 17.
6
Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems.
Angew Chem Int Ed Engl. 2024 Feb 26;63(9):e202306569. doi: 10.1002/anie.202306569. Epub 2024 Jan 18.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Molecular Pumps and Motors.
J Am Chem Soc. 2021 Apr 21;143(15):5569-5591. doi: 10.1021/jacs.0c13388. Epub 2021 Apr 8.

引用本文的文献

2
Computational Analysis of the Kinetic Requirements for Coupled Reaction Systems.
Molecules. 2025 Feb 15;30(4):911. doi: 10.3390/molecules30040911.
3
Catalysis-driven Active Transport Across a Liquid Membrane.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202421234. doi: 10.1002/anie.202421234. Epub 2025 Mar 4.
4
Power Strokes in Molecular Motors: Predictive, Irrelevant, or Somewhere in Between?
J Am Chem Soc. 2025 Jan 8;147(1):1063-1073. doi: 10.1021/jacs.4c14481. Epub 2024 Dec 20.
5
On the Control of Directionality of Myosin.
J Am Chem Soc. 2024 Oct 5. doi: 10.1021/jacs.4c09528.
6
Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms.
Nat Chem Biol. 2025 May;21(5):648-656. doi: 10.1038/s41589-024-01694-2. Epub 2024 Aug 1.
7
Surface-energy ratchet motor with geometrical symmetry driven by biased random walk.
Sci Rep. 2024 Jul 18;14(1):16619. doi: 10.1038/s41598-024-67383-1.
8
Photoswitchable Imines Drive Dynamic Covalent Systems to Nonequilibrium Steady States.
J Am Chem Soc. 2024 Jul 31;146(30):20720-20727. doi: 10.1021/jacs.4c03817. Epub 2024 Jul 18.
9
Excited State Dynamics in Unidirectional Photochemical Molecular Motors.
J Am Chem Soc. 2024 May 8;146(18):12255-12270. doi: 10.1021/jacs.4c01019. Epub 2024 Apr 24.
10
Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine.
Biophys J. 2024 Feb 6;123(3):374-388. doi: 10.1016/j.bpj.2024.01.002. Epub 2024 Jan 9.

本文引用的文献

1
Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.
Nat Chem. 2016 Feb;8(2):138-43. doi: 10.1038/nchem.2410. Epub 2015 Dec 21.
3
On the hydrodynamics of swimming enzymes.
J Chem Phys. 2015 Oct 28;143(16):165101. doi: 10.1063/1.4933424.
4
Allosteric Modulation of Substrate Binding within a Tetracationic Molecular Receptor.
J Am Chem Soc. 2015 Oct 21;137(41):13252-5. doi: 10.1021/jacs.5b08656. Epub 2015 Oct 12.
5
Simulating the function of sodium/proton antiporters.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12378-83. doi: 10.1073/pnas.1516881112. Epub 2015 Sep 21.
6
From self-sorted coordination libraries to networking nanoswitches for catalysis.
Chem Commun (Camb). 2015 Oct 18;51(81):14956-68. doi: 10.1039/c5cc06605k.
7
Artificial Molecular Machines.
Chem Rev. 2015 Sep 23;115(18):10081-206. doi: 10.1021/acs.chemrev.5b00146. Epub 2015 Sep 8.
8
Design and Synthesis of Nonequilibrium Systems.
ACS Nano. 2015 Sep 22;9(9):8672-88. doi: 10.1021/acsnano.5b03809. Epub 2015 Aug 17.
9
Controlling Motion at the Nanoscale: Rise of the Molecular Machines.
ACS Nano. 2015 Aug 25;9(8):7746-68. doi: 10.1021/acsnano.5b03367. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验