Simonov Aleksey N
J Opt Soc Am A Opt Image Sci Vis. 2014 Dec 1;31(12):2680-93. doi: 10.1364/JOSAA.31.002680.
A functional approach to the multivariate statistical model of a generalized incoherent passive optical ranging and imaging system with a CCD sensor is proposed. This approach implies that a large number of discrete, statistically independent, random data (pixel readouts) can be approximated by a continuous random function. Thus, the joint probability density function (PDF) takes a functional form; the statistical averages of the infinite-variate PDF and the Fisher information become functional integrals that can be treated analytically in the Gaussian approximation. The Cramer-Rao bounds on estimator-error variances are obtained for the scalar and functional deterministic parameters of the model. An approximate expression is derived for the PDF of the sum of independent Gaussian and Poisson random variables using the steepest-descent method, and the resulting PDF is shown to be asymptotically Gaussian. As an illustration, we apply the developed approach to a passive optical rangefinder with chiral wavefront coding. Numerical and experimental examples are presented.
提出了一种针对具有电荷耦合器件(CCD)传感器的广义非相干无源光学测距与成像系统多元统计模型的函数方法。该方法意味着大量离散、统计独立的随机数据(像素读数)可以用连续随机函数来近似。因此,联合概率密度函数(PDF)采用函数形式;无限变量PDF的统计平均值和费希尔信息成为可以在高斯近似中进行解析处理的泛函积分。针对模型的标量和函数确定性参数,获得了估计器误差方差的克拉美 - 罗界。使用最速下降法推导了独立高斯和泊松随机变量之和的PDF的近似表达式,结果表明所得PDF渐近高斯。作为示例,我们将所开发的方法应用于具有手性波前编码的无源光学测距仪。给出了数值和实验示例。