IEEE Trans Neural Netw Learn Syst. 2015 Feb;26(2):318-30. doi: 10.1109/TNNLS.2014.2315042.
Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.
价格操纵是指那些交易者利用精心设计的交易行为,人为地推高或压低基础股票价格以获取利润的活动。随着交易量和交易频率的增加,价格操纵可能会对资本市场的正常运作和完整性造成极大的破坏。现有文献主要集中在对市场滥用案例的实证研究或基于某些假设对特定操纵类型的分析上。尚未开发出用于实时分析和检测价格操纵的有效方法。本文提出了一种新的方法,称为具有异常状态的自适应隐马尔可夫模型(AHMMAS),用于对价格操纵活动进行建模和检测。该方法结合了小波变换和梯度作为特征提取方法,AHMMAS 模型可以用于检测价格操纵和识别基本操纵类型。在对来自纳斯达克和伦敦证券交易所的七个股票 tick 数据以及通过随机微分方程模拟的十个股票价格进行的评估实验中,所提出的 AHMMAS 模型可以有效地检测价格操纵模式,并优于所选的基准模型。