Suppr超能文献

用于疾病预测的个体特异性边缘网络分析。

Individual-specific edge-network analysis for disease prediction.

作者信息

Yu Xiangtian, Zhang Jingsong, Sun Shaoyan, Zhou Xin, Zeng Tao, Chen Luonan

机构信息

Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai 200031, China.

School of Mathematics and Information, Ludong University, Yantai 264025, China.

出版信息

Nucleic Acids Res. 2017 Nov 16;45(20):e170. doi: 10.1093/nar/gkx787.

Abstract

Predicting pre-disease state or tipping point just before irreversible deterioration of health is a difficult task. Edge-network analysis (ENA) with dynamic network biomarker (DNB) theory opens a new way to study this problem by exploring rich dynamical and high-dimensional information of omics data. Although theoretically ENA has the ability to identify the pre-disease state during the disease progression, it requires multiple samples for such prediction on each individual, which are generally not available in clinical practice, thus limiting its applications in personalized medicine. In this work to overcome this problem, we propose the individual-specific ENA (iENA) with DNB to identify the pre-disease state of each individual in a single-sample manner. In particular, iENA can identify individual-specific biomarkers for the disease prediction, in addition to the traditional disease diagnosis. To demonstrate the effectiveness, iENA was applied to the analysis on omics data of H3N2 cohorts and successfully detected early-warning signals of the influenza infection for each individual both on the occurred time and event in an accurate manner, which actually achieves the AUC larger than 0.9. iENA not only found the new individual-specific biomarkers but also recovered the common biomarkers of influenza infection reported from previous works. In addition, iENA also detected the critical stages of multiple cancers with significant edge-biomarkers, which were further validated by survival analysis on both TCGA data and other independent data.

摘要

预测疾病前期状态或健康状况不可逆恶化前的临界点是一项艰巨的任务。基于动态网络生物标志物(DNB)理论的边缘网络分析(ENA)通过探索组学数据丰富的动力学和高维信息,为研究这一问题开辟了一条新途径。尽管从理论上讲,ENA有能力在疾病进展过程中识别疾病前期状态,但它需要对每个个体进行多次采样才能进行此类预测,而这在临床实践中通常难以实现,从而限制了其在个性化医疗中的应用。在这项旨在克服这一问题的工作中,我们提出了带有DNB的个体特异性ENA(iENA),以单样本方式识别每个个体的疾病前期状态。特别地,iENA除了能进行传统的疾病诊断外,还能识别用于疾病预测的个体特异性生物标志物。为证明其有效性,iENA被应用于H3N2队列的组学数据分析,并成功准确地检测出每个个体流感感染的预警信号,包括发生时间和事件,其实际获得的AUC大于0.9。iENA不仅发现了新的个体特异性生物标志物,还重现了先前研究报道的流感感染的常见生物标志物。此外,iENA还通过显著的边缘生物标志物检测到多种癌症的关键阶段,并在TCGA数据和其他独立数据上通过生存分析进一步验证了这些阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/5714249/0dc2f042ae17/gkx787fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验