Suppr超能文献

基于动态马尔可夫模型的异常检测

Anomaly detection based on a dynamic Markov model.

作者信息

Ren Huorong, Ye Zhixing, Li Zhiwu

机构信息

School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China.

The Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xi'an 710071, China.

出版信息

Inf Sci (N Y). 2017 Oct;411:52-65. doi: 10.1016/j.ins.2017.05.021. Epub 2017 May 15.

Abstract

Anomaly detection in sequence data is becoming more and more important in a wide variety of application domains such as credit card fraud detection, health care in medical field, and intrusion detection in cyber security. In the existing anomaly detection approaches, Markov chain techniques are widely accepted for their simple realization and few parameters. However, the short memory property of a classical Markov model ignores the interaction among data, and the long memory property of a higher order Markov model clouds the relationship between the previous data and current test data, and reduces the reliability of the model. Besides, both of these models cannot successfully describe the sequences changing with a tendency. In this paper, we propose an anomaly detection approach based on a dynamic Markov model. This approach segments sequence data by a sliding window. In the sliding window, we define the states of data according to the value of the data and establish a higher order Markov model with a proper order consequently, to balance the length of the memory property and keep up with the trend of sequences. In addition, an anomaly substitution strategy is proposed to prevent the detected anomalies from impacting the building of the models and keep anomaly detection continuously. The experimental results using simulated datasets and real-world datasets have demonstrated that the proposed approach improves the adaptability and stability of anomaly detection in sequence data.

摘要

序列数据中的异常检测在诸如信用卡欺诈检测、医疗领域的医疗保健以及网络安全中的入侵检测等广泛的应用领域中变得越来越重要。在现有的异常检测方法中,马尔可夫链技术因其实现简单且参数较少而被广泛接受。然而,经典马尔可夫模型的短期记忆特性忽略了数据之间的相互作用,而高阶马尔可夫模型的长期记忆特性模糊了先前数据与当前测试数据之间的关系,并降低了模型的可靠性。此外,这两种模型都无法成功描述具有趋势变化的序列。在本文中,我们提出了一种基于动态马尔可夫模型的异常检测方法。该方法通过滑动窗口对序列数据进行分段。在滑动窗口中,我们根据数据的值定义数据的状态,并相应地建立一个适当阶数的高阶马尔可夫模型,以平衡记忆特性的长度并跟上序列的趋势。此外,还提出了一种异常替换策略,以防止检测到的异常影响模型的构建并持续进行异常检测。使用模拟数据集和真实世界数据集的实验结果表明,所提出的方法提高了序列数据中异常检测的适应性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c854/7094635/557e331ff542/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验