Suppr超能文献

通过3D生物打印构建体外气血屏障

Engineering an in vitro air-blood barrier by 3D bioprinting.

作者信息

Horváth Lenke, Umehara Yuki, Jud Corinne, Blank Fabian, Petri-Fink Alke, Rothen-Rutishauser Barbara

机构信息

Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.

Department of Respiratory Medicine, Bern University Hospital, CH-3010 Bern, Switzerland.

出版信息

Sci Rep. 2015 Jan 22;5:7974. doi: 10.1038/srep07974.

Abstract

Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.

摘要

近年来,在风险评估领域大力开展体外替代物的研发和商业化工作,已产生了新的、有前景的二维和三维(3D)细胞培养模型。然而,目前仍没有逼真的3D体外肺泡模型。在此,我们报告利用生物打印技术生物制造由内皮细胞、基底膜和上皮细胞层组成的人气血组织屏障类似物。与手工方法不同,我们证明该技术能够自动且可重复地创建更薄且更均匀的细胞层,这是优化气血组织屏障所必需的。这个生物打印平台将为构建用于安全评估和药物疗效测试的高通量筛选的先进3D肺模型提供一个出色的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a0/4303938/63a15a306e29/srep07974-f1.jpg

相似文献

1
Engineering an in vitro air-blood barrier by 3D bioprinting.
Sci Rep. 2015 Jan 22;5:7974. doi: 10.1038/srep07974.
2
Bioprinting for Human Respiratory and Gastrointestinal In Vitro Models.
Methods Mol Biol. 2020;2140:199-215. doi: 10.1007/978-1-0716-0520-2_13.
3
[Three dimensional bioprinting technology of human dental pulp cells mixtures].
Beijing Da Xue Xue Bao Yi Xue Ban. 2013 Feb 18;45(1):105-8.
4
Three-dimensional bioprinting in tissue engineering and regenerative medicine.
Biotechnol Lett. 2016 Feb;38(2):203-11. doi: 10.1007/s10529-015-1975-1. Epub 2015 Oct 14.
5
Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2206-11. doi: 10.1073/pnas.1524510113. Epub 2016 Feb 8.
6
Proof-of-concept: 3D bioprinting of pigmented human skin constructs.
Biofabrication. 2018 Jan 23;10(2):025005. doi: 10.1088/1758-5090/aa9e1e.
7
A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.
Cell Biochem Biophys. 2016 Jun;74(2):93-8. doi: 10.1007/s12013-016-0730-0. Epub 2016 May 18.
8
Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.
J Lab Autom. 2016 Aug;21(4):496-509. doi: 10.1177/2211068214567146. Epub 2015 Jan 21.
9
Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2016 Mar;22(3):173-88. doi: 10.1089/ten.TEC.2015.0307. Epub 2016 Jan 18.
10
Organ Bioprinting: Are We There Yet?
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201701018. Epub 2017 Nov 29.

引用本文的文献

2
The impact of cell density variations on nanoparticle uptake across bioprinted A549 gradients.
Front Bioeng Biotechnol. 2025 Apr 30;13:1584635. doi: 10.3389/fbioe.2025.1584635. eCollection 2025.
4
Spheroids from Epithelial and Mesenchymal Cell Phenotypes as Building Blocks in Bioprinting (Review).
Sovrem Tekhnologii Med. 2025;17(1):133-154. doi: 10.17691/stm2025.17.1.11. Epub 2025 Feb 28.
7
Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues.
Bioact Mater. 2024 Sep 24;43:195-224. doi: 10.1016/j.bioactmat.2024.09.025. eCollection 2025 Jan.
8
Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach.
Biomed Res Int. 2024 Aug 16;2024:9947692. doi: 10.1155/2024/9947692. eCollection 2024.
9
Current Challenges to Align Inflammatory Key Events in Animals and Lung Cell Models .
Chem Res Toxicol. 2024 Oct 21;37(10):1601-1611. doi: 10.1021/acs.chemrestox.4c00113. Epub 2024 Aug 8.
10
Advances in lung bioengineering: Where we are, where we need to go, and how to get there.
Front Transplant. 2023 Apr 17;2:1147595. doi: 10.3389/frtra.2023.1147595. eCollection 2023.

本文引用的文献

1
3D bioprinting of tissues and organs.
Nat Biotechnol. 2014 Aug;32(8):773-85. doi: 10.1038/nbt.2958.
2
Bioprinting technology and its applications.
Eur J Cardiothorac Surg. 2014 Sep;46(3):342-8. doi: 10.1093/ejcts/ezu148. Epub 2014 Jul 24.
3
Microfluidic platforms for advanced risk assessments of nanomaterials.
Nanotoxicology. 2015 May;9(3):381-95. doi: 10.3109/17435390.2014.940402. Epub 2014 Jul 22.
4
Matrigel: from discovery and ECM mimicry to assays and models for cancer research.
Adv Drug Deliv Rev. 2014 Dec 15;79-80:3-18. doi: 10.1016/j.addr.2014.06.005. Epub 2014 Jul 2.
5
Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.
Exp Biol Med (Maywood). 2014 Sep;239(9):1135-69. doi: 10.1177/1535370214536679. Epub 2014 Jun 24.
6
3D biofabrication strategies for tissue engineering and regenerative medicine.
Annu Rev Biomed Eng. 2014 Jul 11;16:247-76. doi: 10.1146/annurev-bioeng-071813-105155. Epub 2014 May 29.
8
Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery.
Adv Drug Deliv Rev. 2014 Aug;75:129-40. doi: 10.1016/j.addr.2014.05.014. Epub 2014 May 29.
9
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
Lab Chip. 2014 Jul 7;14(13):2202-11. doi: 10.1039/c4lc00030g. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验