Suppr超能文献

RPI-Pred:利用序列和结构信息预测非编码RNA与蛋白质的相互作用

RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information.

作者信息

Suresh V, Liu Liang, Adjeroh Donald, Zhou Xiaobo

机构信息

Department of Radiology, Wake Forest University Health Science, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26505, USA.

出版信息

Nucleic Acids Res. 2015 Feb 18;43(3):1370-9. doi: 10.1093/nar/gkv020. Epub 2015 Jan 21.

Abstract

RNA-protein complexes are essential in mediating important fundamental cellular processes, such as transport and localization. In particular, ncRNA-protein interactions play an important role in post-transcriptional gene regulation like mRNA localization, mRNA stabilization, poly-adenylation, splicing and translation. The experimental methods to solve RNA-protein interaction prediction problem remain expensive and time-consuming. Here, we present the RPI-Pred (RNA-protein interaction predictor), a new support-vector machine-based method, to predict protein-RNA interaction pairs, based on both the sequences and structures. The results show that RPI-Pred can correctly predict RNA-protein interaction pairs with ∼94% prediction accuracy when using sequence and experimentally determined protein and RNA structures, and with ∼83% when using sequences and predicted protein and RNA structures. Further, our proposed method RPI-Pred was superior to other existing ones by predicting more experimentally validated ncRNA-protein interaction pairs from different organisms. Motivated by the improved performance of RPI-Pred, we further applied our method for reliable construction of ncRNA-protein interaction networks. The RPI-Pred is publicly available at: http://ctsb.is.wfubmc.edu/projects/rpi-pred.

摘要

RNA-蛋白质复合物在介导重要的基本细胞过程(如运输和定位)中至关重要。特别是,非编码RNA-蛋白质相互作用在转录后基因调控中发挥重要作用,如mRNA定位、mRNA稳定、多聚腺苷酸化、剪接和翻译。解决RNA-蛋白质相互作用预测问题的实验方法仍然昂贵且耗时。在此,我们提出了RPI-Pred(RNA-蛋白质相互作用预测器),这是一种基于支持向量机的新方法,用于基于序列和结构预测蛋白质-RNA相互作用对。结果表明,当使用序列以及实验测定的蛋白质和RNA结构时,RPI-Pred能够以约94%的预测准确率正确预测RNA-蛋白质相互作用对;当使用序列以及预测的蛋白质和RNA结构时,预测准确率约为83%。此外,我们提出的RPI-Pred方法通过预测来自不同生物体的更多经实验验证的非编码RNA-蛋白质相互作用对,优于其他现有方法。受RPI-Pred性能提升的激励,我们进一步将我们的方法应用于可靠构建非编码RNA-蛋白质相互作用网络。RPI-Pred可在以下网址公开获取:http://ctsb.is.wfubmc.edu/projects/rpi-pred。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验