Suppr超能文献

用于异构图中长链非编码RNA-蛋白质相互作用预测的访谈对比学习与微小RNA融合

Inter-view contrastive learning and miRNA fusion for lncRNA-protein interaction prediction in heterogeneous graphs.

作者信息

Mao Yijun, Wu Jiale, Weng Jian, Li Ming, Xiong Yunyan, Gu Wanrong, Jiang Rongjin, Pang Rui, Lin Xudong, Tang Deyu

机构信息

College of Mathematics and Informatics, South China Agricultural University, 483 Wushan Road, Tianhe District, GuangZhou 510642, China.

National Key Laboratory of Data Space Technology and System, 3 Minzhuang Road, Haidian District, Beijing 100195, China.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf148.

Abstract

Predicting long non-coding RNA (lncRNA)-protein interactions is essential for understanding biological processes and discovering new therapeutic targets. In this study, we propose a novel model based on inter-view contrastive learning and miRNA fusion for lncRNA-protein interaction (LPI) prediction, called ICMF-LPI, which utilizes a heterogeneous information network to enhance LPI prediction. The model integrates miRNA as a mediator, constructing an lncRNA-miRNA-protein network, and employs metapath to extract diverse relationships from heterogeneous graphs. By fusing miRNA-related information and leveraging contrastive learning across inter-views, ICMF-LPI effectively captures potential interactions. Experimental results, including five-fold cross-validation, demonstrate the model's superior performance compared to several state-of-the-art methods, with significant improvements in the area under the receiver operating characteristic curve and the area under the precision-recall curve metrics. Notably, even when direct LPI connections are excluded, ICMF-LPI still achieves competitive predictive accuracy, performing comparably or better than some existing models. This demonstrates that the proposed model is effective in scenarios where direct interaction data are unavailable. This approach offers a promising direction for developing predictive models in bioinformatics, particularly in challenging conditions.

摘要

预测长链非编码RNA(lncRNA)与蛋白质的相互作用对于理解生物过程和发现新的治疗靶点至关重要。在本研究中,我们提出了一种基于访谈对比学习和miRNA融合的新型模型,用于预测lncRNA与蛋白质的相互作用(LPI),称为ICMF-LPI,该模型利用异质信息网络增强LPI预测。该模型将miRNA作为中介,构建lncRNA-miRNA-蛋白质网络,并采用元路径从异构图中提取不同的关系。通过融合与miRNA相关的信息并利用跨访谈的对比学习,ICMF-LPI有效地捕捉了潜在的相互作用。实验结果,包括五折交叉验证,表明该模型与几种现有方法相比具有优越的性能,在受试者工作特征曲线下面积和精确召回率曲线下面积指标上有显著提高。值得注意的是,即使排除直接的LPI连接,ICMF-LPI仍然具有有竞争力的预测准确性,表现与一些现有模型相当或更好。这表明所提出的模型在没有直接相互作用数据的情况下是有效的。这种方法为生物信息学中预测模型的开发提供了一个有前景的方向,特别是在具有挑战性的条件下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4007/11975365/ee67134fdc37/bbaf148f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验