Suppr超能文献

粗粒化预测 RNA 环结构。

Coarse-grained prediction of RNA loop structures.

机构信息

Department of Physics and Department of Biochemistry, University of Missouri, Columbia, MO, USA.

出版信息

PLoS One. 2012;7(11):e48460. doi: 10.1371/journal.pone.0048460. Epub 2012 Nov 8.

Abstract

One of the key issues in the theoretical prediction of RNA folding is the prediction of loop structure from the sequence. RNA loop free energies are dependent on the loop sequence content. However, most current models account only for the loop length-dependence. The previously developed "Vfold" model (a coarse-grained RNA folding model) provides an effective method to generate the complete ensemble of coarse-grained RNA loop and junction conformations. However, due to the lack of sequence-dependent scoring parameters, the method is unable to identify the native and near-native structures from the sequence. In this study, using a previously developed iterative method for extracting the knowledge-based potential parameters from the known structures, we derive a set of dinucleotide-based statistical potentials for RNA loops and junctions. A unique advantage of the approach is its ability to go beyond the the (known) native structures by accounting for the full free energy landscape, including all the nonnative folds. The benchmark tests indicate that for given loop/junction sequences, the statistical potentials enable successful predictions for the coarse-grained 3D structures from the complete conformational ensemble generated by the Vfold model. The predicted coarse-grained structures can provide useful initial folds for further detailed structural refinement.

摘要

RNA 折叠的理论预测中的一个关键问题是从序列预测环结构。RNA 环自由能取决于环序列含量。然而,目前大多数模型仅考虑了环长度的依赖性。先前开发的“Vfold”模型(一种粗粒 RNA 折叠模型)提供了一种有效的方法来生成完整的粗粒 RNA 环和连接构象的集合。然而,由于缺乏依赖序列的评分参数,该方法无法从序列中识别天然和近天然结构。在这项研究中,我们使用先前开发的从已知结构中提取基于知识的势能参数的迭代方法,为 RNA 环和连接点推导了一组基于二核苷酸的统计势能。该方法的一个独特优势是它能够通过考虑完整的自由能景观(包括所有非天然折叠)来超越(已知)天然结构。基准测试表明,对于给定的环/连接序列,统计势能能够成功地从 Vfold 模型生成的完整构象集合中预测粗粒 3D 结构。预测的粗粒结构可以为进一步的详细结构精修提供有用的初始折叠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66f8/3493578/255171ac8265/pone.0048460.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验