Saha Agniva, Mitchell Jessica A, Nishida Yuri, Hildreth Jonathan E, Ariberre Joshua A, Gilbert Wendy V, Garfinkel David J
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
J Virol. 2015 Apr;89(7):3922-38. doi: 10.1128/JVI.03060-14. Epub 2015 Jan 21.
Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation.
Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.
酿酒酵母和奇异酵母缺乏保守的RNA干扰途径,而是利用一种新型的拷贝数控制(CNC)来抑制Ty1逆转录转座。尽管非编码转录本与CNC有关,但我们在此提供证据表明,截短形式的Gag衣壳蛋白(p22)或其加工形式(p18)对于CNC是必需且足够的,并且可能由Ty1内部转录本编码。p22/p18与Ty1病毒样颗粒(VLP)共分级分离,并影响VLP产量、蛋白质组成和形态。尽管p22/p18和Gag在细胞质中共定位,但p22/p18会破坏用于VLP组装的位点。谷胱甘肽S-转移酶(GST)亲和下拉实验也表明p18和Gag相互作用。因此,这种内在的Gag样限制因子通过干扰VLP组装和功能赋予CNC,并扩展了用于限制逆转录元件传播的策略。
逆转录转座子在许多真核生物的染色体格局中占主导地位,可通过插入或基因组重排导致突变,并且在进化上与HIV等逆转录病毒相关。因此,了解限制转座和逆转录病毒复制的因素至关重要。目前的工作描述了一种源自酵母Ty1元件衣壳基因的逆转录转座子编码的限制蛋白,它以剂量依赖的方式破坏病毒样颗粒组装。这种拷贝数控制形式起到分子变阻器的作用,当存在少量Ty1元件时允许高水平的逆转录转座,而随着拷贝数增加抑制转座。因此,酵母和Ty1共同进化出一种对“宿主和寄生物”都有益的拷贝数控制形式。据我们所知,这是文献中描述的首个Gag样逆转录转座子限制因子,并扩展了限制蛋白调节逆转录元件复制的方式。