Suppr超能文献

Gag的反式显性形式限制Ty1逆转录转座并介导拷贝数控制。

A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control.

作者信息

Saha Agniva, Mitchell Jessica A, Nishida Yuri, Hildreth Jonathan E, Ariberre Joshua A, Gilbert Wendy V, Garfinkel David J

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

J Virol. 2015 Apr;89(7):3922-38. doi: 10.1128/JVI.03060-14. Epub 2015 Jan 21.

Abstract

UNLABELLED

Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation.

IMPORTANCE

Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.

摘要

未标记

酿酒酵母和奇异酵母缺乏保守的RNA干扰途径,而是利用一种新型的拷贝数控制(CNC)来抑制Ty1逆转录转座。尽管非编码转录本与CNC有关,但我们在此提供证据表明,截短形式的Gag衣壳蛋白(p22)或其加工形式(p18)对于CNC是必需且足够的,并且可能由Ty1内部转录本编码。p22/p18与Ty1病毒样颗粒(VLP)共分级分离,并影响VLP产量、蛋白质组成和形态。尽管p22/p18和Gag在细胞质中共定位,但p22/p18会破坏用于VLP组装的位点。谷胱甘肽S-转移酶(GST)亲和下拉实验也表明p18和Gag相互作用。因此,这种内在的Gag样限制因子通过干扰VLP组装和功能赋予CNC,并扩展了用于限制逆转录元件传播的策略。

重要性

逆转录转座子在许多真核生物的染色体格局中占主导地位,可通过插入或基因组重排导致突变,并且在进化上与HIV等逆转录病毒相关。因此,了解限制转座和逆转录病毒复制的因素至关重要。目前的工作描述了一种源自酵母Ty1元件衣壳基因的逆转录转座子编码的限制蛋白,它以剂量依赖的方式破坏病毒样颗粒组装。这种拷贝数控制形式起到分子变阻器的作用,当存在少量Ty1元件时允许高水平的逆转录转座,而随着拷贝数增加抑制转座。因此,酵母和Ty1共同进化出一种对“宿主和寄生物”都有益的拷贝数控制形式。据我们所知,这是文献中描述的首个Gag样逆转录转座子限制因子,并扩展了限制蛋白调节逆转录元件复制的方式。

相似文献

1
A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control.
J Virol. 2015 Apr;89(7):3922-38. doi: 10.1128/JVI.03060-14. Epub 2015 Jan 21.
2
The Ty1 Retrotransposon Restriction Factor p22 Targets Gag.
PLoS Genet. 2015 Oct 9;11(10):e1005571. doi: 10.1371/journal.pgen.1005571. eCollection 2015 Oct.
3
A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces.
Curr Genet. 2016 May;62(2):321-9. doi: 10.1007/s00294-015-0550-6. Epub 2015 Dec 9.
4
Ty1 escapes restriction by the self-encoded factor p22 through mutations in capsid.
Mob Genet Elements. 2016 Mar 7;6(2):e1154639. doi: 10.1080/2159256X.2016.1154639. eCollection 2016 Mar-Apr.
5
Ribosome Biogenesis Modulates Ty1 Copy Number Control in .
Genetics. 2017 Dec;207(4):1441-1456. doi: 10.1534/genetics.117.300388. Epub 2017 Oct 18.
6
Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions.
Nucleic Acids Res. 2015 Sep 3;43(15):7414-31. doi: 10.1093/nar/gkv695. Epub 2015 Jul 8.
7
8
Characterizing the functions of Ty1 Gag and the Gag-derived restriction factor p22/p18.
Mob Genet Elements. 2016 Mar 7;6(2):e1154637. doi: 10.1080/2159256X.2016.1154637. eCollection 2016 Mar-Apr.
9
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination.
PLoS Genet. 2020 Feb 21;16(2):e1008632. doi: 10.1371/journal.pgen.1008632. eCollection 2020 Feb.

引用本文的文献

3
Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective.
Annu Rev Genomics Hum Genet. 2024 Aug;25(1):1-25. doi: 10.1146/annurev-genom-120822-105708. Epub 2024 Aug 6.
4
Evolution of a Restriction Factor by Domestication of a Yeast Retrotransposon.
Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae050.
7
Testing the Genomic Shock Hypothesis Using Transposable Element Expression in Yeast Hybrids.
Front Fungal Biol. 2021 Aug 23;2:729264. doi: 10.3389/ffunb.2021.729264. eCollection 2021.
8
Hijacking Transposable Elements for Saturation Mutagenesis in Fungi.
Front Fungal Biol. 2021 Apr 13;2:633876. doi: 10.3389/ffunb.2021.633876. eCollection 2021.
9
An interchangeable prion-like domain is required for Ty1 retrotransposition.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2303358120. doi: 10.1073/pnas.2303358120. Epub 2023 Jul 17.

本文引用的文献

2
Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9609-14. doi: 10.1073/pnas.1402448111. Epub 2014 Jun 16.
3
Protein kinase A regulates gene-specific translational adaptation in differentiating yeast.
RNA. 2014 Jun;20(6):912-22. doi: 10.1261/rna.044552.114. Epub 2014 Apr 23.
4
Co-translational localization of an LTR-retrotransposon RNA to the endoplasmic reticulum nucleates virus-like particle assembly sites.
PLoS Genet. 2014 Mar 6;10(3):e1004219. doi: 10.1371/journal.pgen.1004219. eCollection 2014 Mar.
5
Recognizing the enemy within: licensing RNA-guided genome defense.
Trends Biochem Sci. 2014 Jan;39(1):25-34. doi: 10.1016/j.tibs.2013.10.003. Epub 2013 Nov 23.
7
Genome-wide analysis of intraspecific transposon diversity in yeast.
BMC Genomics. 2013 Jun 14;14:399. doi: 10.1186/1471-2164-14-399.
8
Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis.
Cell. 2013 May 23;153(5):1000-11. doi: 10.1016/j.cell.2013.05.012.
9
Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing.
Genome Res. 2013 Jun;23(6):977-87. doi: 10.1101/gr.150342.112. Epub 2013 Apr 11.
10
Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
PLoS One. 2012;7(11):e50978. doi: 10.1371/journal.pone.0050978. Epub 2012 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验