Suppr超能文献

具有多模态数据融合的分类算法能够准确地区分视神经脊髓炎和多发性硬化症。

Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis.

作者信息

Eshaghi Arman, Riyahi-Alam Sadjad, Saeedi Roghayyeh, Roostaei Tina, Nazeri Arash, Aghsaei Aida, Doosti Rozita, Ganjgahi Habib, Bodini Benedetta, Shakourirad Ali, Pakravan Manijeh, Ghana'ati Hossein, Firouznia Kavous, Zarei Mojtaba, Azimi Amir Reza, Sahraian Mohammad Ali

机构信息

MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran ; Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.

MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Neuroimage Clin. 2015 Jan 9;7:306-14. doi: 10.1016/j.nicl.2015.01.001. eCollection 2015.

Abstract

Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.

摘要

视神经脊髓炎(NMO)在临床表现和影像学结果上与多发性硬化症(MS)有诸多相似之处,长期以来一直被视为MS的一种变体。随着NMO中一种特定生物标志物——抗水通道蛋白4的出现,这一假设发生了改变;然而,鉴别诊断仍然具有挑战性,目前尚不清楚神经影像学和临床数据的结合是否可用于辅助临床决策。计算机辅助诊断是一个快速发展的过程,有望促进对表现相似的疾病进行客观的鉴别诊断。在本研究中,我们旨在使用一种强大的多模态数据融合方法,即多核学习,对受试者进行自动诊断。我们纳入了30例NMO患者、25例MS患者和35名健康志愿者,并进行了T1加权高分辨率扫描、扩散张量成像(DTI)和静息态功能磁共振成像(fMRI)的多模态成像。此外,受试者还接受了临床检查和认知评估。我们在初始模型中纳入了来自神经影像学、临床和认知测量的18个先验预测因子。我们使用10折交叉验证来了解每种模态的重要性,训练并最终测试模型性能。区分MS和NMO的平均准确率为88%,其中可见白质病变负荷、正常外观白质(DTI)和功能连接对最终分类的贡献最大。在一个多类分类问题中,我们区分了所有3组(MS、NMO和健康对照),平均准确率为84%。在这种分类中,可见白质病变负荷、功能连接和认知分数是3个最重要的模态。我们的工作提供了初步证据,表明计算工具可用于帮助对NMO和MS进行客观的鉴别诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验