Suppr超能文献

体内低流量推拉式灌注采样所致组织损伤的实验评估与计算建模

Experimental evaluation and computational modeling of tissue damage from low-flow push-pull perfusion sampling in vivo.

作者信息

Cepeda David E, Hains Leah, Li David, Bull Joseph, Lentz Stephen I, Kennedy Robert T

机构信息

University of Michigan, Department of Biomedical Engineering, 1101 Beal Ave, Ann Arbor, MI, 49109, United States; University of Michigan, Department of Chemistry, 930N University Ave, Ann Arbor, MI, 48109, United States.

Wadsworth Center, NYS Department of Health, New York State Bicycle Route 5, Albany, NY 12201, United States.

出版信息

J Neurosci Methods. 2015 Mar 15;242:97-105. doi: 10.1016/j.jneumeth.2015.01.019. Epub 2015 Jan 19.

Abstract

BACKGROUND

Neurochemical monitoring via sampling probes is valuable for deciphering neurotransmission in vivo. Microdialysis is commonly used; however, the spatial resolution is poor.

NEW METHOD

Recently push-pull perfusion at low flow rates (50nL/min) has been proposed as a method for in vivo sampling from the central nervous system. Tissue damage from such probes has not been investigated in detail. In this work, we evaluated acute tissue response to low-flow push-pull perfusion by infusing the nuclear stains Sytox Orange and Hoechst 33342 through probes implanted in the striatum for 200min, to label damaged and total cells, respectively, in situ.

RESULTS

Using the damaged/total labeled cell ratio as a measure of tissue damage, we found that 33±8% were damaged within the dye region around a microdialysis probe. We found that low-flow push-pull perfusion probes damaged 24±4% of cells in the sampling area. Flow had no effect on the number of damaged cells for low-flow push-pull perfusion. Modeling revealed that shear stress and pressure gradients generated by the flow were lower than thresholds expected to cause damage. Comparison with existing methods.Push-pull perfusion caused less tissue damage but yielded 1500-fold better spatial resolution.

CONCLUSIONS

Push-pull perfusion at low flow rates is a viable method for sampling from the brain with potential for high temporal and spatial resolution. Tissue damage is mostly caused by probe insertion. Smaller probes may yield even lower damage.

摘要

背景

通过采样探针进行神经化学监测对于在体内解读神经传递非常有价值。微透析是常用的方法;然而,其空间分辨率较差。

新方法

最近,低流速(50纳升/分钟)的推挽式灌注已被提议作为一种从中枢神经系统进行体内采样的方法。此类探针造成的组织损伤尚未得到详细研究。在这项工作中,我们通过将核染料Sytox Orange和Hoechst 33342通过植入纹状体的探针灌注200分钟,分别原位标记受损细胞和全部细胞,来评估低流速推挽式灌注引起的急性组织反应。

结果

以受损/总标记细胞比率作为组织损伤的衡量指标,我们发现在微透析探针周围的染料区域内,33±8%的细胞受损。我们发现低流速推挽式灌注探针在采样区域损伤了24±4%的细胞。流速对低流速推挽式灌注的受损细胞数量没有影响。模型显示,由流速产生的剪切应力和压力梯度低于预期会导致损伤的阈值。与现有方法的比较。推挽式灌注造成的组织损伤较小,但空间分辨率提高了1500倍。

结论

低流速推挽式灌注是一种可行的从大脑采样的方法,具有高时间和空间分辨率的潜力。组织损伤主要由探针插入引起。更小的探针可能造成的损伤更低。

相似文献

1
Experimental evaluation and computational modeling of tissue damage from low-flow push-pull perfusion sampling in vivo.
J Neurosci Methods. 2015 Mar 15;242:97-105. doi: 10.1016/j.jneumeth.2015.01.019. Epub 2015 Jan 19.
2
Demonstration of low flow push-pull perfusion.
J Neurosci Methods. 2002 Nov 15;121(1):93-101. doi: 10.1016/s0165-0270(02)00245-5.
3
5
Simultaneous comparison of cerebral dialysis and push-pull perfusion in the brain of rats: a critical review.
Neurosci Biobehav Rev. 1998 May;22(3):371-87. doi: 10.1016/s0149-7634(97)00025-0.
6
Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo.
ACS Chem Neurosci. 2013 Feb 20;4(2):321-9. doi: 10.1021/cn300158p. Epub 2012 Nov 16.
7
Development of μ-Low-Flow-Push-Pull Perfusion Probes for Ex Vivo Sampling from Mouse Hippocampal Tissue Slices.
ACS Chem Neurosci. 2018 Feb 21;9(2):252-259. doi: 10.1021/acschemneuro.7b00277. Epub 2017 Nov 10.
9
Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane.
Anal Chem. 2016 Jan 19;88(2):1230-7. doi: 10.1021/acs.analchem.5b03541. Epub 2016 Jan 4.
10
Peristaltic versus syringe pumps for push-pull perfusion: tissue pathology and dopamine recovery in rat neostriatum.
J Neurosci Methods. 1989 Jan;26(3):195-202. doi: 10.1016/0165-0270(89)90116-7.

引用本文的文献

2
Computational Modeling as a Tool to Drive the Development of a Novel, Chemical Device for Monitoring the Injured Brain and Body.
ACS Chem Neurosci. 2023 Oct 4;14(19):3599-3608. doi: 10.1021/acschemneuro.3c00063. Epub 2023 Sep 22.
3
Microdialysis and microperfusion electrodes in neurologic disease monitoring.
Fluids Barriers CNS. 2021 Dec 1;18(1):52. doi: 10.1186/s12987-021-00292-x.
4
New chemical biopsy tool for spatially resolved profiling of human brain tissue in vivo.
Sci Rep. 2021 Sep 30;11(1):19522. doi: 10.1038/s41598-021-98973-y.
6
Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies.
ACS Chem Neurosci. 2019 Apr 17;10(4):1875-1883. doi: 10.1021/acschemneuro.8b00271. Epub 2018 Jul 23.
7
Microdialysis as an Important Technique in Systems Pharmacology-a Historical and Methodological Review.
AAPS J. 2017 Sep;19(5):1294-1303. doi: 10.1208/s12248-017-0108-2. Epub 2017 Jul 31.

本文引用的文献

1
Pharmacological mitigation of tissue damage during brain microdialysis.
Anal Chem. 2013 Sep 3;85(17):8173-9. doi: 10.1021/ac401201x. Epub 2013 Aug 20.
2
Microfabricated sampling probes for in vivo monitoring of neurotransmitters.
Anal Chem. 2013 Apr 16;85(8):3828-31. doi: 10.1021/ac400579x. Epub 2013 Apr 3.
3
Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo.
ACS Chem Neurosci. 2013 Feb 20;4(2):321-9. doi: 10.1021/cn300158p. Epub 2012 Nov 16.
4
Effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue.
Anal Chem. 2011 Oct 15;83(20):7662-7. doi: 10.1021/ac200782h. Epub 2011 Sep 15.
5
6
Minimizing tissue damage in electroosmotic sampling.
Anal Chem. 2010 Aug 1;82(15):6370-6. doi: 10.1021/ac101271r.
7
Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology.
Biomed Microdevices. 2010 Oct;12(5):761-7. doi: 10.1007/s10544-010-9430-5.
8
Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold.
Biomaterials. 2009 Sep;30(25):4219-26. doi: 10.1016/j.biomaterials.2009.04.026. Epub 2009 May 28.
10
Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices.
J Neural Eng. 2008 Dec;5(4):385-91. doi: 10.1088/1741-2560/5/4/003. Epub 2008 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验