Suppr超能文献

多回波动脉自旋标记 MRI 采用可变 TR 和团注时长进行脑血流和动脉渡越时间图成像。

Multi-TI Arterial Spin Labeling MRI with Variable TR and Bolus Duration for Cerebral Blood Flow and Arterial Transit Time Mapping.

出版信息

IEEE Trans Med Imaging. 2015 Jun;34(6):1392-402. doi: 10.1109/TMI.2015.2395257. Epub 2015 Jan 21.

Abstract

Arterial spin labeling (ASL) is an MRI perfusion imaging method from which quantitative cerebral blood flow (CBF) can be calculated. We present a multi-TI ASL method (multi-TI integrated ASL) in which variable post-labeling delays and variable TRs are used to improve the estimation of arterial transit time (ATT) and CBF while shortening the scan time by 41% compared to the conventional methods. Variable bolus widths allow for T1 and M0 estimation from raw ASL data. Multi-TI integrated pseudo-continuous ASL images were collected at 7 TI times ranging 100-4300 ms. Voxel-wise T1 and M0 maps were estimated, then CBF and ATT maps were created using the estimated T1 tissue map. All maps were consistent with physiological values reported in the literature. Based on simulations and in vivo comparisons, this method demonstrates higher CBF and ATT estimation efficiency than other ATT acquisition methods and better fit to the perfusion model. It produces CBF maps with reduced sensitivity to errors from ATT and tissue T1 variations. The estimated M0, T1, and ATT maps also have potential clinical utility. The method requires a single scan acquired within a clinically acceptable scan time (under 6 minutes) and with low sensitivity to motion.

摘要

动脉自旋标记(ASL)是一种 MRI 灌注成像方法,可从中计算出定量脑血流(CBF)。我们提出了一种多 TI ASL 方法(多 TI 集成 ASL),其中使用可变的后标记延迟和可变的 TR,以缩短扫描时间(与传统方法相比缩短 41%)的同时,提高动脉渡越时间(ATT)和 CBF 的估计。可变的团注宽度允许从原始 ASL 数据中估计 T1 和 M0。在 7 个 TI 时间(100-4300 ms)采集多 TI 集成伪连续 ASL 图像。估计了体素级别的 T1 和 M0 图,然后使用估计的 T1 组织图创建 CBF 和 ATT 图。所有的图都与文献中报道的生理值一致。基于模拟和体内比较,该方法显示出比其他 ATT 采集方法更高的 CBF 和 ATT 估计效率,并且与灌注模型的拟合更好。它产生的 CBF 图对 ATT 和组织 T1 变化的误差敏感性降低。估计的 M0、T1 和 ATT 图也具有潜在的临床应用价值。该方法需要在临床可接受的扫描时间(6 分钟以内)内采集单次扫描,并且对运动的敏感性低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验