Suppr超能文献

嗜热链球菌中的全局调控因子CodY控制着代谢网络,以促进在牛奶环境中的生长。

The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment.

作者信息

Lu W W, Wang Y, Wang T, Kong J

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.

State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China.

出版信息

Appl Environ Microbiol. 2015 Apr;81(7):2349-58. doi: 10.1128/AEM.03361-14. Epub 2015 Jan 23.

Abstract

CodY is a transcriptional regulator conserved in the low-GC group of Gram-positive bacteria. In this work, we demonstrated the presence in Streptococcus thermophilus ST2017 of a functional member of the CodY family of global regulatory proteins, S. thermophilus CodY (CodYSt). The CodYSt regulon was identified by transcriptome analysis; it consisted predominantly of genes involved in amino acid metabolism but also included genes involved in several other cellular processes, including carbon metabolism, nutrient transport, and stress response. It was revealed that CodYSt repressed the transformation of the central metabolic pathway to amino acid metabolism and improved lactose utilization. Furthermore, the glutamate dehydrogenase gene (gdhA), repressed by CodYSt, was suggested to coordinate the interconversion between carbon metabolism and amino acid metabolism and to play an important role on the optimal growth of S. thermophilus ST2017 in milk. A conserved CodYSt box [AA(T/A)(A/T)TTCTGA(A/C)AATT] was indeed required for in vitro binding of CodYSt to the target regions of DNA. These results provided evidence for the function of CodYSt, by which this strain coordinately regulates its various metabolic pathways so as to adapt to the milk environment.

摘要

CodY是一种在革兰氏阳性菌低GC组中保守的转录调节因子。在本研究中,我们证明了嗜热链球菌ST2017中存在全局调节蛋白CodY家族的一个功能成员,即嗜热链球菌CodY(CodYSt)。通过转录组分析鉴定了CodYSt调控子;它主要由参与氨基酸代谢的基因组成,但也包括参与其他几个细胞过程的基因,包括碳代谢、营养物质运输和应激反应。结果表明,CodYSt抑制了中心代谢途径向氨基酸代谢的转变,并提高了乳糖利用率。此外,受CodYSt抑制的谷氨酸脱氢酶基因(gdhA)被认为可协调碳代谢和氨基酸代谢之间的相互转化,并对嗜热链球菌ST2017在牛奶中的最佳生长起重要作用。事实上,CodYSt体外结合DNA靶区域需要一个保守的CodYSt框[AA(T/A)(A/T)TTCTGA(A/C)AATT]。这些结果为CodYSt的功能提供了证据,通过该功能,该菌株可协调调节其各种代谢途径以适应牛奶环境。

相似文献

1
The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment.
Appl Environ Microbiol. 2015 Apr;81(7):2349-58. doi: 10.1128/AEM.03361-14. Epub 2015 Jan 23.
2
3
CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization.
J Bacteriol. 2008 Jan;190(2):590-601. doi: 10.1128/JB.00917-07. Epub 2007 Nov 16.
10
Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.
PLoS Genet. 2016 Feb 19;12(2):e1005870. doi: 10.1371/journal.pgen.1005870. eCollection 2016 Feb.

引用本文的文献

1
Genetic and technological diversity of isolated from the Saint-Nectaire PDO cheese-producing area.
Front Microbiol. 2023 Nov 14;14:1245510. doi: 10.3389/fmicb.2023.1245510. eCollection 2023.
3
Systems-Level Analysis of the Global Regulatory Mechanism of CodY in Lactococcus lactis Metabolism and Nisin Immunity Modulation.
Appl Environ Microbiol. 2022 Mar 8;88(5):e0184721. doi: 10.1128/AEM.01847-21. Epub 2022 Jan 19.
4
Molecular Analysis of Glutamate Decarboxylases in .
Front Microbiol. 2021 Sep 10;12:691968. doi: 10.3389/fmicb.2021.691968. eCollection 2021.
5
Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism.
Appl Environ Microbiol. 2020 Oct 28;86(22). doi: 10.1128/AEM.01446-20.
9
The CodY regulator is essential for virulence in Streptococcus suis serotype 2.
Sci Rep. 2016 Feb 17;6:21241. doi: 10.1038/srep21241.

本文引用的文献

1
Yogurt: Technology and Biochemistry .
J Food Prot. 1980 Dec;43(12):939-977. doi: 10.4315/0362-028X-43.12.939.
2
Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
PLoS One. 2012;7(4):e36296. doi: 10.1371/journal.pone.0036296. Epub 2012 Apr 27.
3
The simultaneous determination of NAD(H) and NADP(H) utilization by glutamate dehydrogenase.
Mol Cell Biochem. 2010 Nov;344(1-2):253-9. doi: 10.1007/s11010-010-0549-8. Epub 2010 Aug 10.
4
Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus.
Mol Microbiol. 2010 Jun 1;76(5):1142-61. doi: 10.1111/j.1365-2958.2010.07105.x. Epub 2010 Mar 30.
6
Emergence of a cell wall protease in the Streptococcus thermophilus population.
Appl Environ Microbiol. 2010 Jan;76(2):451-60. doi: 10.1128/AEM.01018-09. Epub 2009 Nov 13.
7
DEGseq: an R package for identifying differentially expressed genes from RNA-seq data.
Bioinformatics. 2010 Jan 1;26(1):136-8. doi: 10.1093/bioinformatics/btp612. Epub 2009 Oct 24.
8
Global regulation by (p)ppGpp and CodY in Streptococcus mutans.
J Bacteriol. 2008 Aug;190(15):5291-9. doi: 10.1128/JB.00288-08. Epub 2008 Jun 6.
9
CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization.
J Bacteriol. 2008 Jan;190(2):590-601. doi: 10.1128/JB.00917-07. Epub 2007 Nov 16.
10
Interaction of Bacillus subtilis CodY with GTP.
J Bacteriol. 2008 Feb;190(3):798-806. doi: 10.1128/JB.01115-07. Epub 2007 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验