Herrmann Martina, Rusznyák Anna, Akob Denise M, Schulze Isabel, Opitz Sebastian, Totsche Kai Uwe, Küsel Kirsten
Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.
Appl Environ Microbiol. 2015 Apr;81(7):2384-94. doi: 10.1128/AEM.03269-14. Epub 2015 Jan 23.
The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed-upper and lower-limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 10(3) to 6 × 10(6) genes liter(-1) over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.
地下环境对源自地表的外源碳输入的依赖性的传统观点,正受到越来越多关于岩石自养在含水层碳流中作用的证据的挑战。我们将自养(卡尔文-本森-巴斯德循环)信息与来自两个叠加的上下层石灰岩地下水库(含水层)中地下水的总微生物群落分析的信息联系起来。定量PCR显示,高达17%的微生物种群具有通过卡尔文循环固定二氧化碳的遗传潜力,在两年时间里,编码I型和II型核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)的cbbM和cbbL基因的丰度范围为1.14×10³至6×10⁶基因升⁻¹。基于16S rRNA转录本的活跃微生物群落结构在两个含水层之间有所不同,在缺氧的上层含水层中,异养、兼性厌氧、与土壤相关的菌群比例更大。大多数已鉴定的参与二氧化碳同化的系统发育组似乎参与了硫或氮化合物的氧化,并且同时拥有I型和II型RubisCO,从而能够在氧气和二氧化碳波动强烈的环境中高效固定二氧化碳。在下层含水层的cbbM和cbbL转录本库中,Sulfuricella属和亚硝化单胞菌属分别占读取片段的比例高达78%和33%,分别占16S rRNA序列读取的5.6%和3.8%。我们的结果表明,原始石灰岩含水层中的很大一部分细菌具有自养固定二氧化碳的遗传潜力,能量很可能由还原态硫和氮化合物的氧化提供。