Suppr超能文献

一种基于无线陀螺仪的稳健实时步态事件检测及其在正常和异常步态中的应用。

A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits.

作者信息

Gouwanda Darwin, Gopalai Alpha Agape

机构信息

Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia.

Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia; Curtin University, Sarawak Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.

出版信息

Med Eng Phys. 2015 Feb;37(2):219-25. doi: 10.1016/j.medengphy.2014.12.004. Epub 2015 Jan 22.

Abstract

Gait events detection allows clinicians and biomechanics researchers to determine timing of gait events, to estimate duration of stance phase and swing phase and to segment gait data. It also aids biomedical engineers to improve the design of orthoses and FES (functional electrical stimulation) systems. In recent years, researchers have resorted to using gyroscopes to determine heel-strike (HS) and toe-off (TO) events in gait cycles. However, these methods are subjected to significant delays when implemented in real-time gait monitoring devices, orthoses, and FES systems. Therefore, the work presented in this paper proposes a method that addresses these delays, to ensure real-time gait event detection. The proposed algorithm combines the use of heuristics and zero-crossing method to identify HS and TO. Experiments involving: (1) normal walking; (2) walking with knee brace; and (3) walking with ankle brace for overground walking and treadmill walking were designed to verify and validate the identified HS and TO. The performance of the proposed method was compared against the established gait detection algorithms. It was observed that the proposed method produced detection rate that was comparable to earlier reported methods and recorded reduced time delays, at an average of 100 ms.

摘要

步态事件检测使临床医生和生物力学研究人员能够确定步态事件的时间,估计站立期和摆动期的持续时间,并对步态数据进行分段。它还有助于生物医学工程师改进矫形器和功能性电刺激(FES)系统的设计。近年来,研究人员已诉诸使用陀螺仪来确定步态周期中的足跟触地(HS)和足趾离地(TO)事件。然而,这些方法在实时步态监测设备、矫形器和FES系统中实施时会出现显著延迟。因此,本文提出了一种解决这些延迟的方法,以确保实时步态事件检测。所提出的算法结合了启发式方法和过零方法来识别HS和TO。设计了涉及以下内容的实验:(1)正常行走;(2)佩戴膝关节支具行走;(3)佩戴踝关节支具进行地面行走和跑步机行走,以验证和确认所识别的HS和TO。将所提出方法的性能与已有的步态检测算法进行了比较。结果发现,所提出的方法产生的检测率与早期报道的方法相当,并且记录的时间延迟减少,平均为100毫秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验