Issartel Johann, Bardainne Thomas, Gaillot Philippe, Marin Ludovic
Multisensory Motor Learning Laboratory, School of Health and Human Performance, Dublin City University Dublin, Ireland.
Geophysics Imagery Laboratory, Université de Pau et des Pays de l'Adour Pau, France.
Front Psychol. 2015 Jan 9;5:1566. doi: 10.3389/fpsyg.2014.01566. eCollection 2014.
This article sheds light on a quantitative method allowing psychologists and behavioral scientists to take into account the specific characteristics emerging from the interaction between two sets of data in general and two individuals in particular. The current article outlines the practical elements of the cross-wavelet transform (CWT) method, highlighting WHY such a method is important in the analysis of time-series in psychology. The idea is (1) to bridge the gap between physical measurements classically used in physiology - neuroscience and psychology; (2) and demonstrates how the CWT method can be applied in psychology. One of the aims is to answer three important questions WHO could use this method in psychology, WHEN it is appropriate to use it (suitable type of time-series) and HOW to use it. Throughout these explanations, an example with simulated data is used. Finally, data from real life application are analyzed. This data corresponds to a rating task where the participants had to rate in real time the emotional expression of a person. The objectives of this practical example are (i) to point out how to manipulate the properties of the CWT method on real data, (ii) to show how to extract meaningful information from the results, and (iii) to provide a new way to analyze psychological attributes.
本文介绍了一种定量方法,使心理学家和行为科学家能够考虑到一般两组数据之间、特别是两个个体之间相互作用所产生的特定特征。本文概述了交叉小波变换(CWT)方法的实际要素,强调了为何这种方法在心理学时间序列分析中很重要。其目的是:(1)弥合生理学、神经科学和心理学中经典使用的物理测量之间的差距;(2)展示CWT方法如何应用于心理学。目标之一是回答三个重要问题:谁可以在心理学中使用这种方法,何时适合使用它(时间序列的合适类型)以及如何使用它。在这些解释过程中,使用了一个模拟数据的示例。最后,对来自实际应用的数据进行了分析。这些数据对应于一项评分任务,参与者必须实时对一个人的情感表达进行评分。这个实际示例的目标是:(i)指出如何在实际数据上操纵CWT方法的属性,(ii)展示如何从结果中提取有意义的信息,以及(iii)提供一种分析心理属性的新方法。