Suppr超能文献

基于小波的方法提取人类运动行为中观察到的间歇性不连续性。

A wavelet-based method for extracting intermittent discontinuities observed in human motor behavior.

机构信息

Department of Information Media Systems, Graduate School of Information Systems, The University of Electro-Communications, Tokyo, Japan.

Department of Information Media Systems, Graduate School of Information Systems, The University of Electro-Communications, Tokyo, Japan.

出版信息

Neural Netw. 2015 Feb;62:91-101. doi: 10.1016/j.neunet.2014.05.004. Epub 2014 May 15.

Abstract

Human motor behavior often shows intermittent discontinuities even when people try to follow a continuously moving target. Although most previous studies revealed common characteristics of this "motor intermittency" using frequency analysis, this technique is not always appropriate because the nature of the intermittency is not stationary, i.e., the temporal intervals between the discontinuities may vary irregularly. In the present paper, we propose a novel method for extracting intermittent discontinuities using a continuous wavelet transform (CWT). This method is equivalent to the detection of peak of the jerk profile in principle, but it successfully and stably detects discontinuities using the amplitude and phase information of the complex wavelet transform. More specifically, the singularity point on the time-scale plane plays a key role in detecting the discontinuities. Another important feature is that the proposed method does not require parameter tuning because it is based on the nature of hand movement. In addition, this method does not contain any optimization process, which avoids explosive increase in computational cost for long time-series data. The performance of the proposed method was examined using an artificial trajectory composed of several primitive movements, and an actual hand trajectory in a continuous target-tracking task. The functional rationale of the proposed method is discussed.

摘要

人类的运动行为常常表现出间歇性的不连续性,即使人们试图跟随一个连续移动的目标。虽然大多数先前的研究使用频率分析揭示了这种“运动不连续性”的共同特征,但这种技术并不总是合适的,因为不连续性的性质不是固定的,即不连续之间的时间间隔可能不规则地变化。在本文中,我们提出了一种使用连续小波变换 (CWT) 提取间歇性不连续性的新方法。从原理上讲,该方法等效于检测急动度轮廓的峰值,但它成功且稳定地使用复小波变换的幅度和相位信息检测不连续性。更具体地说,时频平面上的奇异点在检测不连续性方面起着关键作用。另一个重要特征是,由于该方法基于手部运动的性质,因此不需要参数调整。此外,该方法不包含任何优化过程,从而避免了长时间序列数据计算成本的爆炸式增长。使用由几个基本运动组成的人工轨迹和连续目标跟踪任务中的实际手部轨迹来检查所提出方法的性能。讨论了所提出方法的功能原理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验