Suppr超能文献

溶血磷脂酸在大鼠缺氧性肺血管重塑模型中的可能作用

Possible role of lysophosphatidic acid in rat model of hypoxic pulmonary vascular remodeling.

作者信息

Shlyonsky Vadim, Naeije Robert, Mies Frédérique

机构信息

Department of Physiology, Université Libre de Bruxelles, Brussels, Belgium.

出版信息

Pulm Circ. 2014 Sep;4(3):471-81. doi: 10.1086/677362.

Abstract

Pulmonary hypertension is characterized by cellular and structural changes in the vascular wall of pulmonary arteries. We hypothesized that lysophosphatidic acid (LPA), a bioactive lipid, is implicated in this vascular remodeling in a rat model of hypoxic pulmonary hypertension. Exposure of Wistar rats to 10% O2 for 3 weeks induced an increase in the mean serum levels of LPA, to 40.9 (log-detransformed standard deviations: 23.4-71.7) μM versus 21.6 (11.0-42.3) μM in a matched control animal group (P = 0.037). We also observed perivascular LPA immunohistochemical staining in lungs of hypoxic rats colocalized with the secreted lysophospholipase D autotaxin (ATX). Moreover, ATX colocalized with mast cell tryptase, suggesting implication of these cells in perivascular LPA production. Hypoxic rat lungs expressed more ATX transcripts (2.4-fold) and more transcripts of proteins implicated in cell migration: β2 integrin (1.74-fold), intracellular adhesion molecule 1 (ICAM-1; 1.84-fold), and αM integrin (2.70-fold). Serum from the hypoxic group of animals had significantly higher chemoattractant properties toward rat primary lung fibroblasts, and this increase in cell migration could be prevented by the LPA receptor 1 and 3 antagonists. LPA also increased adhesive properties of human pulmonary artery endothelial cells as well as those of human peripheral blood mononuclear cells, via the activation of LPA receptor 1 or 3 followed by the stimulation of gene expression of ICAM-1, β-1, E-selectin, and vascular cell adhesion molecule integrins. In conclusion, chronic hypoxia increases circulating and tissue levels of LPA, which might induce fibroblast migration and recruitment of mononuclear cells in pulmonary vasculature, both of which contribute to pulmonary vascular remodeling.

摘要

肺动脉高压的特征是肺动脉血管壁的细胞和结构改变。我们推测溶血磷脂酸(LPA),一种生物活性脂质,在低氧性肺动脉高压大鼠模型的这种血管重塑中起作用。将Wistar大鼠暴露于10%氧气环境3周,可使LPA的平均血清水平升高至40.9(对数转换标准差:23.4 - 71.7)μM,而匹配的对照动物组为21.6(11.0 - 42.3)μM(P = 0.037)。我们还观察到低氧大鼠肺组织中血管周围LPA免疫组化染色与分泌型溶血磷脂酶D自分泌运动因子(ATX)共定位。此外,ATX与肥大细胞类胰蛋白酶共定位,提示这些细胞参与血管周围LPA的产生。低氧大鼠肺组织表达更多的ATX转录本(2.4倍)以及更多与细胞迁移相关的蛋白质转录本:β2整合素(1.74倍)、细胞间黏附分子1(ICAM - 1;1.84倍)和αM整合素(2.70倍)。低氧组动物的血清对大鼠原代肺成纤维细胞具有显著更高的趋化活性,并且这种细胞迁移的增加可被LPA受体1和3拮抗剂阻止。LPA还通过激活LPA受体1或3,随后刺激ICAM - 1、β - 1、E - 选择素和血管细胞黏附分子整合素的基因表达,增加人肺动脉内皮细胞以及人外周血单核细胞的黏附特性。总之,慢性低氧会增加LPA的循环和组织水平,这可能诱导成纤维细胞迁移并募集肺血管中的单核细胞,两者均有助于肺血管重塑。

相似文献

2
Targeting the RhoA-ROCK pathway to regulate T-cell homeostasis in hypoxia-induced pulmonary arterial hypertension.
Pulm Pharmacol Ther. 2018 Jun;50:111-122. doi: 10.1016/j.pupt.2018.04.004. Epub 2018 Apr 17.
4
Autotaxin in Pathophysiology and Pulmonary Fibrosis.
Front Med (Lausanne). 2018 Jun 13;5:180. doi: 10.3389/fmed.2018.00180. eCollection 2018.
5
Targeting the autotaxin - Lysophosphatidic acid receptor axis in cardiovascular diseases.
Biochem Pharmacol. 2019 Jun;164:74-81. doi: 10.1016/j.bcp.2019.03.035. Epub 2019 Mar 27.
6
Autotaxin and chronic inflammatory diseases.
J Autoimmun. 2019 Nov;104:102327. doi: 10.1016/j.jaut.2019.102327. Epub 2019 Aug 28.
7
The atherogenic actions of LPC on vascular smooth muscle cells and its LPA receptor mediated mechanism.
Biochem Biophys Res Commun. 2018 Sep 10;503(3):1911-1918. doi: 10.1016/j.bbrc.2018.07.135. Epub 2018 Jul 29.

引用本文的文献

1
Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators.
Biomolecules. 2025 Jan 27;15(2):182. doi: 10.3390/biom15020182.
2
Involvement of Lysophospholipids in Pulmonary Vascular Functions and Diseases.
Biomedicines. 2024 Jan 8;12(1):124. doi: 10.3390/biomedicines12010124.
3
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension.
Mediators Inflamm. 2022 Sep 22;2022:1878766. doi: 10.1155/2022/1878766. eCollection 2022.
8
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension.
Cells. 2021 Jun 30;10(7):1648. doi: 10.3390/cells10071648.
9
O-GlcNAc modification of MYPT1 modulates lysophosphatidic acid-induced cell contraction in fibroblasts.
J Biol Chem. 2021 Jan-Jun;296:100800. doi: 10.1016/j.jbc.2021.100800. Epub 2021 May 19.
10
Expanding the clinical and metabolic phenotype of DPM2 deficient congenital disorders of glycosylation.
Mol Genet Metab. 2021 Jan;132(1):27-37. doi: 10.1016/j.ymgme.2020.10.007. Epub 2020 Oct 17.

本文引用的文献

1
2
Mast cell number, phenotype, and function in human pulmonary arterial hypertension.
Pulm Circ. 2012 Apr-Jun;2(2):220-8. doi: 10.4103/2045-8932.97609.
4
Hypoxic pulmonary vasoconstriction.
Physiol Rev. 2012 Jan;92(1):367-520. doi: 10.1152/physrev.00041.2010.
5
Circulating fibrocytes and pulmonary arterial hypertension.
Eur Respir J. 2012 Jan;39(1):210-2. doi: 10.1183/09031936.00039811.
6
Lung mast cells and hypoxic pulmonary hypertension.
Physiol Res. 2012;61(1):1-11. doi: 10.33549/physiolres.932221. Epub 2011 Dec 20.
7
Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling.
Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):24-32. doi: 10.1161/ATVBAHA.111.234708. Epub 2011 Oct 20.
8
Opposing effects of bone morphogenetic protein-2 and endothelin-1 on lung fibroblast chloride currents.
Am J Respir Cell Mol Biol. 2011 Dec;45(6):1154-60. doi: 10.1165/rcmb.2010-0443OC. Epub 2011 Jun 9.
9
Fibrocytes: potential new therapeutic targets for pulmonary hypertension?
Eur Respir J. 2010 Dec;36(6):1232-5. doi: 10.1183/09031936.00137410.
10
New insights into the mechanism of fibroblast to myofibroblast transformation and associated pathologies.
Int Rev Cell Mol Biol. 2010;282:165-92. doi: 10.1016/S1937-6448(10)82004-0. Epub 2010 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验