Li Feng, Li Yuanxiu, Sun Liming, Chen Xiaoli, An Xingjuan, Yin Changji, Cao Yingxiu, Wu Hui, Song Hao
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin University , Tianjin , 300072 , China.
Petrochemical Research Institute , PetroChina Company Limited , Beijing 102206 , China.
ACS Synth Biol. 2018 Mar 16;7(3):885-895. doi: 10.1021/acssynbio.7b00390. Epub 2018 Feb 21.
Efficient extracellular electron transfer (EET) of exoelectrogens is essentially for practical applications of versatile bioelectrochemical systems. Intracellular electrons flow from NADH to extracellular electron acceptors via EET pathways. However, it was yet established how the manipulation of intracellular NADH impacted the EET efficiency. Strengthening NADH regeneration from NAD, as a feasible approach for cofactor engineering, has been used in regulating the intracellular NADH pool and the redox state (NADH/NAD ratio) of cells. Herein, we first adopted a modular metabolic engineering strategy to engineer and drive the metabolic flux toward the enhancement of intracellular NADH regeneration. We systematically studied 16 genes related to the NAD-dependent oxidation reactions for strengthening NADH regeneration in the four metabolic modules of S. oneidensis MR-1, i.e., glycolysis, C1 metabolism, pyruvate fermentation, and tricarboxylic acid cycle. Among them, three endogenous genes mostly responsible for increasing NADH regeneration were identified, namely gapA2 encoding a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in the glycolysis module, mdh encoding a NAD-dependent malate dehydrogenase in the TCA cycle, and pflB encoding a pyruvate-formate lyase that converted pyruvate to formate in the pyruvate fermentation module. An exogenous gene fdh* from Candida boidinii encoding a NAD-dependent formate dehydrogenase to increase NADH regeneration in the pyruvate fermentation module was further identified. Upon assembling these four genes in S. oneidensis MR-1, ∼4.3-fold increase in NADH/NAD ratio, and ∼1.2-fold increase in intracellular NADH pool were obtained under anaerobic conditions without discharge, which elicited ∼3.0-fold increase in the maximum power output in microbial fuel cells, from 26.2 ± 2.8 (wild-type) to 105.8 ± 4.1 mW/m (recombinant S. oneidensis), suggesting a boost in the EET efficiency. This modular engineering method in controlling the intracellular reducing equivalents would be a general approach in tuning the EET efficiency of exoelectrogens.
胞外电子供体的高效胞外电子转移(EET)对于多功能生物电化学系统的实际应用至关重要。细胞内的电子通过EET途径从NADH流向胞外电子受体。然而,目前尚未确定细胞内NADH的调控如何影响EET效率。作为辅助因子工程的一种可行方法,加强从NAD再生NADH已被用于调节细胞内的NADH库和细胞的氧化还原状态(NADH/NAD比率)。在此,我们首先采用模块化代谢工程策略来设计和驱动代谢通量,以增强细胞内NADH的再生。我们系统地研究了与NAD依赖性氧化反应相关的16个基因,以加强嗜铁还原地杆菌MR-1的四个代谢模块中的NADH再生,即糖酵解、C1代谢、丙酮酸发酵和三羧酸循环。其中,确定了三个对增加NADH再生起主要作用的内源基因,即在糖酵解模块中编码NAD依赖性甘油醛-3-磷酸脱氢酶的gapA2、在三羧酸循环中编码NAD依赖性苹果酸脱氢酶的mdh,以及在丙酮酸发酵模块中编码将丙酮酸转化为甲酸的丙酮酸-甲酸裂解酶的pflB。进一步鉴定了来自博伊丁假丝酵母的一个外源基因fdh*,其编码NAD依赖性甲酸脱氢酶以增加丙酮酸发酵模块中的NADH再生。在嗜铁还原地杆菌MR-1中组装这四个基因后,在无放电的厌氧条件下,NADH/NAD比率增加了约4.3倍,细胞内NADH库增加了约1.2倍,这使得微生物燃料电池的最大功率输出增加了约3.0倍,从26.2±2.8(野生型)增加到105.8±4.1 mW/m(重组嗜铁还原地杆菌),表明EET效率得到了提高。这种控制细胞内还原当量的模块化工程方法将是调节胞外电子供体EET效率的一种通用方法。