Suppr超能文献

合成肺炎克雷伯氏菌-希瓦氏菌联合体使甘油喂养的高性能微生物燃料电池成为可能。

Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

机构信息

Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemi-cal Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.

Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P. R. China.

出版信息

Biotechnol J. 2018 May;13(5):e1700491. doi: 10.1002/biot.201700491. Epub 2017 Nov 27.

Abstract

Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs.

摘要

微生物燃料电池 (MFC) 是一种环保型生物电化学系统,利用微生物作为生物催化剂将生物质转化为电能。甘油是生物柴油精炼过程中的一种废物,是 MFC 的一种有吸引力的底物。然而,甘油不能被众所周知的好氧微生物如希瓦氏菌属(Shewanella oneidensis)用作碳源。在此,为了快速利用甘油发电,作者合理构建了肺炎克雷伯氏菌-希瓦氏菌属微生物联合体,有效地从甘油中收获电能,其中肺炎克雷伯氏菌将甘油转化为乳酸盐,作为碳源和电子供体供给希瓦氏菌属。为了提高电能输出,作者从碳通量分配和细胞外电子传递(EET)效率的角度对联合体进行了系统的工程设计。为了使更多的碳通量流向肺炎克雷伯氏菌中的乳酸盐生物合成途径,作者通过敲除乙醇途径中的醇脱氢酶基因(adhE),并通过异源表达来自保加利亚乳杆菌的乳酸脱氢酶基因(ldhD)和来自大肠杆菌的乳酸转运蛋白基因(lldP)来增强乳酸盐生物合成。为了促进希瓦氏菌属和阳极表面之间的 EET,从枯草芽孢杆菌中引入了生物合成黄素途径。作者进一步优化了甘油浓度,从而可以以恒定的速率连续地用肺炎克雷伯氏菌合成的乳酸盐来喂养希瓦氏菌属。我们的甘油喂养 MFC 产生了 19.9 mW/m 的最大功率密度,明显高于野生型联合体。这项工作表明,工程微生物联合体是一种有效的策略,可以扩大可用碳源的范围,并促进 MFC 中的电能生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验