Suppr超能文献

采用一种新型自适应偏最小二乘法对非线性全同步荧光数据矩阵进行建模。

Modeling nonbilinear total synchronous fluorescence data matrices with a novel adapted partial least squares method.

作者信息

Schenone Agustina V, de Araújo Gomes Adriano, Culzoni María J, Campiglia Andrés D, de Araújo Mário Cesar Ugulino, Goicoechea Héctor C

机构信息

Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - CONICET, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina.

Laboratório de Automação e Instrumentação em Química Analítica e Quimiometria (LAQA) Universidade Federal da Paraíba, CCEN, Departamento de Química, Caixa Postal 5093, CEP 58051-970, João Pessoa, PB, Brazil.

出版信息

Anal Chim Acta. 2015 Feb 15;859:20-8. doi: 10.1016/j.aca.2014.12.014. Epub 2014 Dec 10.

Abstract

A new residual modeling algorithm for nonbilinear data is presented, namely unfolded partial least squares with interference modeling of non bilinear data by multivariate curve resolution by alternating least squares (U-PLS/IMNB/MCR-ALS). Nonbilinearity represents a challenging data structure problem to achieve analyte quantitation from second-order data in the presence of uncalibrated components. Total synchronous fluorescence spectroscopy (TSFS) generates matrices which constitute a typical example of this kind of data. Although the nonbilinear profile of the interferent can be achieved by modeling TSFS data with unfolded partial least squares with residual bilinearization (U-PLS/RBL), an extremely large number of RBL factors has to be considered. Simulated data show that the new model can conveniently handle the studied analytical problem with better performance than PARAFAC, U-PLS/RBL and MCR-ALS, the latter modeling the unfolded data. Besides, one example involving TSFS real matrices illustrates the ability of the new method to handle experimental data, which consists in the determination of ciprofloxacin in the presence of norfloxacin as interferent in water samples.

摘要

提出了一种用于非线性数据的新残差建模算法,即通过交替最小二乘法进行多元曲线分辨对非线性数据进行干扰建模的展开偏最小二乘法(U-PLS/IMNB/MCR-ALS)。在存在未校准成分的情况下,从二阶数据中实现分析物定量时,非线性是一个具有挑战性的数据结构问题。全同步荧光光谱法(TSFS)生成的矩阵构成了这类数据的一个典型例子。虽然可以通过使用带有残差双线性化的展开偏最小二乘法(U-PLS/RBL)对TSFS数据进行建模来获得干扰物的非线性轮廓,但必须考虑大量的RBL因子。模拟数据表明,新模型能够方便地处理所研究的分析问题,其性能优于PARAFAC、U-PLS/RBL和MCR-ALS,后者对展开后的数据进行建模。此外,一个涉及TSFS真实矩阵的例子说明了新方法处理实验数据的能力,该实验是在水样中存在诺氟沙星作为干扰物的情况下测定环丙沙星。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验