Eggleston Michael S, Messer Kevin, Zhang Liming, Yablonovitch Eli, Wu Ming C
Electrical Engineering and Computer Sciences Department, University of California, Berkeley, CA 94720; and.
Bell Labs, Alcatel-Lucent, Holmdel, NJ 07733.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1704-9. doi: 10.1073/pnas.1423294112. Epub 2015 Jan 26.
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.
原子和分子过于微小,无法作为自身发射波长的高效天线。通过提供外部光学天线,可以改变这种平衡;自发发射可能会变得比受激辐射更快,而受激辐射受到实际可实现的泵浦强度的限制。在我们的实验中,发射频率约为200太赫兹光频的铟镓砷磷纳米棒,对于天线间隙间距d = 40纳米,其自发发射强度增强了35倍,对应自发发射速率加速约115倍。经典天线理论预测,在d约为10纳米时,自发发射加速约为2500倍,与1/d²成正比。不幸的是,当d < 10纳米时,由于光学扩展电阻,天线效率降至50%以下,反常趋肤效应(电子表面碰撞)加剧了这种情况。发射体激发态中的量子偶极振荡产生光学交流等效电路电流I(o) = qω|x(o)|/d,为天线增强的自发发射提供能量,其中q|x(o)|是偶极矩阵元。尽管驱动电流源于量子力学,但天线理论并未提及珀塞尔效应或局部态密度模型。此外,在200太赫兹时,等离子体效应较小,仅产生天线共振频率的小幅度偏移。