Suppr超能文献

改进历史界限法以提高疾病聚集性检测,美国纽约市

Refining historical limits method to improve disease cluster detection, New York City, New York, USA.

作者信息

Levin-Rector Alison, Wilson Elisha L, Fine Annie D, Greene Sharon K

出版信息

Emerg Infect Dis. 2015 Feb;21(2):265-72. doi: 10.3201/eid2102.140098.

Abstract

Since the early 2000s, the Bureau of Communicable Disease of the New York City Department of Health and Mental Hygiene has analyzed reportable infectious disease data weekly by using the historical limits method to detect unusual clusters that could represent outbreaks. This method typically produced too many signals for each to be investigated with available resources while possibly failing to signal during true disease outbreaks. We made method refinements that improved the consistency of case inclusion criteria and accounted for data lags and trends and aberrations in historical data. During a 12-week period in 2013, we prospectively assessed these refinements using actual surveillance data. The refined method yielded 74 signals, a 45% decrease from what the original method would have produced. Fewer and less biased signals included a true citywide increase in legionellosis and a localized campylobacteriosis cluster subsequently linked to live-poultry markets. Future evaluations using simulated data could complement this descriptive assessment.

摘要

自21世纪初以来,纽约市卫生和精神卫生部门的传染病局每周都会使用历史界限法分析应报告传染病数据,以检测可能代表疫情爆发的异常聚集情况。这种方法通常会产生过多信号,以至于无法用现有资源对每个信号进行调查,同时在真正的疾病爆发期间可能无法发出信号。我们对方法进行了改进,提高了病例纳入标准的一致性,并考虑了数据滞后、趋势以及历史数据中的异常情况。在2013年的12周期间,我们使用实际监测数据对这些改进进行了前瞻性评估。改进后的方法产生了74个信号,比原始方法产生的信号减少了45%。数量更少且偏差更小的信号包括全市范围内军团病的实际增加以及随后与活禽市场相关的局部弯曲杆菌病聚集情况。未来使用模拟数据进行的评估可以补充这种描述性评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d5/4313630/0f0f144321d0/14-0098-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验