Špírek Mário, Poláková Silvia, Jatzová Katarína, Sulo Pavol
Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Slovakia.
Front Genet. 2015 Jan 12;5:454. doi: 10.3389/fgene.2014.00454. eCollection 2014.
Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ(0) strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol-glycerol can be restored only after mating to some mit (-) strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky-Muller pair has a neglible impact on the separation of species since its imperfection is compensated for by gain-of-function mutation.
核-线粒体相互作用,尤其是那些决定生物物种主要分化的相互作用,可以通过异种线粒体胞质杂种来研究,异种线粒体胞质杂种是指原始线粒体被相关物种的对应线粒体所取代的细胞。酿酒酵母胞质杂种可通过ρ(0)菌株与核配受损的菌株以及来自其他酿酒酵母物种的萌发孢子简单交配制备,并分为三类。含有来自奇异酿酒酵母CBS 432和卡里奥卡酿酒酵母CBS 7994的兼容线粒体DNA(mtDNA)的胞质杂种在代谢和遗传上与含有来自各种酿酒酵母mtDNA的胞质杂种相似。含有来自其他奇异酿酒酵母菌株、卡里奥卡酿酒酵母、库德里亚夫齐酿酒酵母和米卡塔酿酒酵母mtDNA的胞质杂种需要一段时间的适应来建立有效的氧化磷酸化。它们表现出温度敏感表型,在非发酵碳源上生长速度较慢,从葡萄糖转换后有很长的滞后期。它们呼吸能力的下降和细胞色素aa3含量的减少与cox1I3β的低效剪接有关,cox1I3β是所有酿酒酵母物种中都存在但酿酒酵母中不存在的内含子。通过核功能获得,胞质杂种中的剪接缺陷得到补偿,或者可以通过线粒体核糖体蛋白MRP13基因或参与内含子剪接的MRS2、MRS3和MRS4基因的过表达来抑制。含有贝酵母mtDNA的酿酒酵母无法呼吸,只有在与一些线粒体缺陷(mit(-))菌株交配后,其在乙醇-甘油上的生长才能恢复。酿酒酵母与其他酿酒酵母的核-线粒体兼容性极限设定在库德里亚夫齐酿酒酵母和贝酵母之间,大约在1500万年前与酿酒酵母分化。MRS1-cox1酿酒酵母/奇异酿酒酵母细胞核对子对物种分离的影响可以忽略不计,因为其缺陷通过功能获得突变得到补偿。