Arbour Richard B, Dissin Jonathan
Jonathan Dissin, MD, is Medical Director, Neuroscience Unit/Director, Clinical Stroke Service, Einstein Healthcare Network, Philadelphia, PA.
J Neurosci Nurs. 2015 Apr;47(2):113-22. doi: 10.1097/JNN.0000000000000124.
To determine correlation and predictive value between data obtained with the bispectral index (BIS) and diagnostic electroencephalogram (EEG) in determining degree of burst suppression during drug-induced coma. This study seeks to answer the question: "To what degree can EEG suppression and burst count as measured by diagnostic EEG during drug-induced coma be predicted from data obtained from the BIS such as BIS value, suppression ratio (SR), and burst count?"
BACKGROUND/SIGNIFICANCE: During drug-induced coma, cortical EEG is the gold standard for real-time monitoring and drug titration. Diagnostic EEG is, from setup through data analysis, labor intensive, costly, and difficult to maintain uniform clinician competency. BIS monitoring is less expensive, less labor-intensive, and easier to interpret data and establish/maintain competency. Validating BIS data versus diagnostic EEG facilitates effective brain monitoring during drug-induced coma at lower cost with similar outcomes.
This is a prospective, observational cohort study. Four consecutive patients receiving drug-induced coma/EEG monitoring were enrolled. BIS was initiated after informed consent. Variables recorded per minute included presence or absence of EEG burst suppression, burst count, BIS value over time, burst count, and SR. Pearson's product-moment and Spearman rank coefficient for BIS value and SR versus burst count were performed. Regression analysis was utilized to plot BIS values versus bursts/minute on EEG as well as SR versus burst count on EEG. EEG/BIS data were collected from digital data files and transcribed onto data sheets for corresponding time indices.
Four patients yielded 1,972 data sets over 33 hours of EEG/BIS monitoring. Regression coefficient of 0.6673 shows robust predictive value between EEG burst count and BIS SR. Spearman rank coefficient of -0.8727 indicates strong inverse correlation between EEG burst count and BIS SR. Pearson's correlation coefficient between EEG versus BIS burst count was .8256 indicating strong positive correlation. Spearman's rank coefficient of 0.8810 and Pearson's correlation coefficient of .6819 showed strong correlation between BIS value versus EEG burst count. Number of patients (4) limits available statistics and ability to generalize results. Graphs and statistics show strong correlation/predictive value for BIS parameters to EEG suppression.
This study is the first to measure correlation and predictive value between BIS monitoring and diagnostic EEG for degree of EEG suppression and burst count in the adult population. Available statistic tests and graphing of variables from BIS and diagnostic EEG show strong correlation and predictive value between both monitoring technologies during drug-induced coma. These support using BIS value, SR, and burst count to predict degree of EEG suppression in real time for titrating metabolic suppression therapy.
确定在药物诱导昏迷期间,通过脑电双频指数(BIS)获得的数据与诊断性脑电图(EEG)在确定爆发抑制程度方面的相关性和预测价值。本研究旨在回答以下问题:“在药物诱导昏迷期间,通过诊断性EEG测量的EEG抑制和爆发次数,能在多大程度上从BIS获得的数据(如BIS值、抑制率(SR)和爆发次数)中预测出来?”
背景/意义:在药物诱导昏迷期间,皮质EEG是实时监测和药物滴定的金标准。从设置到数据分析,诊断性EEG劳动强度大、成本高,且难以保持临床医生能力的一致性。BIS监测成本较低、劳动强度较小,且数据解释和能力建立/维持更容易。验证BIS数据与诊断性EEG有助于在药物诱导昏迷期间以较低成本进行有效的脑监测,且结果相似。
这是一项前瞻性观察性队列研究。连续纳入4例接受药物诱导昏迷/EEG监测的患者。在获得知情同意后开始进行BIS监测。每分钟记录的变量包括EEG爆发抑制的有无、爆发次数、随时间变化的BIS值、爆发次数和SR。对BIS值和SR与爆发次数进行Pearson积矩相关系数和Spearman等级系数分析。利用回归分析绘制BIS值与EEG上每分钟爆发次数的关系图,以及SR与EEG上爆发次数的关系图。EEG/BIS数据从数字数据文件中收集,并转录到对应时间指标的数据表上。
4例患者在33小时的EEG/BIS监测中产生了1972个数据集。回归系数0.6673显示EEG爆发次数与BIS SR之间具有较强的预测价值。Spearman等级系数-0.8727表明EEG爆发次数与BIS SR之间存在强负相关。EEG与BIS爆发次数之间的Pearson相关系数为0.8256,表明强正相关。Spearman等级系数0.8810和Pearson相关系数0.6819显示BIS值与EEG爆发次数之间存在强相关性。患者数量(4例)限制了可用统计数据以及结果的推广能力。图表和统计数据显示BIS参数与EEG抑制之间具有强相关性/预测价值。
本研究首次测量了成人中BIS监测与诊断性EEG在EEG抑制程度和爆发次数方面的相关性和预测价值。对BIS和诊断性EEG的变量进行的可用统计检验和绘图显示,在药物诱导昏迷期间,两种监测技术之间具有强相关性和预测价值。这些结果支持使用BIS值、SR和爆发次数实时预测EEG抑制程度,以滴定代谢抑制治疗。