Suppr超能文献

与术中脑电图的视觉分析相比,爆发抑制比低估了脑电图抑制的绝对持续时间。

Burst-suppression ratio underestimates absolute duration of electroencephalogram suppression compared with visual analysis of intraoperative electroencephalogram.

机构信息

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Br J Anaesth. 2017 May 1;118(5):755-761. doi: 10.1093/bja/aex054.

Abstract

BACKGROUND

Machine-generated indices based on quantitative electroencephalography (EEG), such as the patient state index (PSI™) and burst-suppression ratio (BSR), are increasingly being used to monitor intraoperative depth of anaesthesia in the endeavour to improve postoperative neurological outcomes, such as postoperative delirium (POD). However, the accuracy of the BSR compared with direct visualization of the EEG trace with regard to the prediction of POD has not been evaluated previously.

METHODS

Forty-one consecutive patients undergoing non-cardiac, non-intracranial surgery with general anaesthesia wore a SedLine ® monitor during surgery and were assessed after surgery for the presence of delirium with the Confusion Assessment Method. The intraoperative EEG was scanned for absolute minutes of EEG suppression and correlated with the incidence of POD. The BSR and PSI™ were compared between patients with and without POD.

RESULTS

Visual analysis of the EEG by neurologists and the SedLine ® -generated BSR provided a significantly different distribution of estimated minutes of EEG suppression ( P =0.037). The Sedline ® system markedly underestimated the amount of EEG suppression. The number of minutes of suppression assessed by visual analysis of the EEG was significantly associated with POD ( P =0.039), whereas the minutes based on the BSR generated by SedLine ® were not associated with POD ( P =0.275).

CONCLUSIONS

Our findings suggest that SedLine ® (machine)-generated indices might underestimate the minutes of EEG suppression, thereby reducing the sensitivity for detecting patients at risk for POD. Thus, the monitoring of machine-generated BSR and PSI™ might benefit from the addition of a visual tracing of the EEG to achieve a more accurate and real-time guidance of anaesthesia depth monitoring and the ultimate goal, to reduce the risk of POD.

摘要

背景

基于定量脑电图(EEG)的机器生成指标,如患者状态指数(PSI™)和爆发抑制比(BSR),越来越多地用于监测术中麻醉深度,以改善术后神经学结局,如术后谵妄(POD)。然而,BSR 相对于直接观察脑电图迹线预测 POD 的准确性以前尚未得到评估。

方法

41 例接受非心脏、非颅内手术全身麻醉的连续患者在手术期间佩戴 SedLine ® 监测仪,并在手术后使用意识混乱评估方法评估谵妄的发生。对术中 EEG 进行绝对 EEG 抑制分钟数扫描,并与 POD 的发生率相关联。比较有无 POD 的患者的 BSR 和 PSI™。

结果

神经科医生对 EEG 的视觉分析和 SedLine ® 生成的 BSR 提供了明显不同的 EEG 抑制估计分钟分布(P =0.037)。SedLine ® 系统明显低估了 EEG 抑制的量。通过对 EEG 进行视觉分析评估的抑制分钟数与 POD 显著相关(P =0.039),而 SedLine ® 生成的基于 BSR 的分钟数与 POD 无关(P =0.275)。

结论

我们的研究结果表明,SedLine ®(机器)生成的指数可能低估了 EEG 抑制的分钟数,从而降低了检测 POD 风险患者的敏感性。因此,机器生成的 BSR 和 PSI™ 的监测可能受益于添加 EEG 的视觉跟踪,以实现更准确和实时的麻醉深度监测指导,并最终降低 POD 的风险。

相似文献

引用本文的文献

10
Continuity with caveats in anesthesia: state and response entropy of the EEG.麻醉中存在连续性问题:EEG 的状态和反应熵。
J Clin Monit Comput. 2024 Oct;38(5):1057-1068. doi: 10.1007/s10877-024-01130-9. Epub 2024 Apr 3.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验