Braun Thomas M, Wang Shufang
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biometrics. 2010 Sep;66(3):805-12. doi: 10.1111/j.1541-0420.2009.01363.x.
We propose a hierarchical model for the probability of dose-limiting toxicity (DLT) for combinations of doses of two therapeutic agents. We apply this model to an adaptive Bayesian trial algorithm whose goal is to identify combinations with DLT rates close to a prespecified target rate. We describe methods for generating prior distributions for the parameters in our model from a basic set of information elicited from clinical investigators. We survey the performance of our algorithm in a series of simulations of a hypothetical trial that examines combinations of four doses of two agents. We also compare the performance of our approach to two existing methods and assess the sensitivity of our approach to the chosen prior distribution.
我们针对两种治疗药物不同剂量组合的剂量限制毒性(DLT)概率提出了一种分层模型。我们将此模型应用于一种自适应贝叶斯试验算法,其目标是识别DLT发生率接近预先指定目标率的组合。我们描述了根据从临床研究人员那里获取的一组基本信息为模型中的参数生成先验分布的方法。我们在一项假设试验的一系列模拟中考察了该算法的性能,该假设试验研究了两种药物四种剂量的组合。我们还将我们方法的性能与两种现有方法进行了比较,并评估了我们的方法对所选先验分布的敏感性。