Lehr Stefan, Hartwig Sonja, Kotzka Jorg
Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University Duesseldorf, Auf'm Hennekamp 65, 40225, Duesseldorf, Germany,
Methods Mol Biol. 2015;1264:1-8. doi: 10.1007/978-1-4939-2257-4_1.
As the powerhouse of the cell, mitochondria play a crucial role in many aspects of life, whereby mitochondrial dysfunctions are associated with pathogenesis of many diseases, like neurodegenerative diseases, obesity, cancer, and metabolic as well as cardiovascular disorders. Mitochondria analysis frequently starts with isolation and enrichment procedures potentially affecting mitochondrial morphology having impact on their function. Due to the complex mitochondrial morphology, the major task is to preserve their structural integrity. Here we critically review a commonly used isolation procedure for mitochondria utilizing differential (gradient) centrifugation and depict major challenges to achieve "functional" mitochondria as basis for comprehensive physiological studies.
作为细胞的动力源,线粒体在生命的许多方面都起着至关重要的作用,线粒体功能障碍与许多疾病的发病机制相关,如神经退行性疾病、肥胖症、癌症以及代谢和心血管疾病。线粒体分析通常始于分离和富集过程,这些过程可能会影响线粒体形态,进而影响其功能。由于线粒体形态复杂,主要任务是保持其结构完整性。在此,我们批判性地回顾了一种常用的利用差速(梯度)离心法分离线粒体的方法,并描述了获得“功能正常”的线粒体作为全面生理学研究基础所面临的主要挑战。