Suppr超能文献

主动抑制热应激诱导的过度通气可减轻热环境中运动期间脑血流速度的降低。

Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

作者信息

Tsuji Bun, Honda Yasushi, Ikebe Yusuke, Fujii Naoto, Kondo Narihiko, Nishiyasu Takeshi

机构信息

Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan; and.

Faculty of Human Development, Kobe University, Kobe, Japan.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R669-79. doi: 10.1152/ajpregu.00419.2014. Epub 2015 Jan 28.

Abstract

Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF.

摘要

长时间运动期间的体温过高会导致通气过度,进而降低动脉血二氧化碳分压(PaCO2),并依次减少脑血流量(CBF)和体温调节反应。我们研究了:1)人类在长时间运动期间是否能够自主抑制体温过高导致的通气过度;2)自主呼吸控制对PaCO2、CBF、出汗和皮肤血流量的影响。12名男性受试者在高温环境(37°C,相对湿度50%)下,以最大摄氧量的50%进行了两次运动试验,持续时间长达60分钟。在整个运动过程中,受试者正常呼吸(正常呼吸试验),或者尝试将每分通气量(呼吸频率由节拍器计时,目标潮气量显示在监视器上)控制在运动5分钟后达到的水平(控制呼吸试验)。将通气和脑血管反应与食管温度(Tes)作图显示,在正常呼吸期间,每分通气量随Tes升高呈线性增加,而控制呼吸减弱了通气量的增加(从控制呼吸开始时每分通气量的增加:在Tes为+1.1°C时,分别为7.4和1.6升/分钟;P < 0.001)。正常呼吸导致随着Tes升高,估计的PaCO2和大脑中动脉血流速度(MCAV)降低,但控制呼吸减弱了这些降低(在Tes为+1.1°C时,估计的PaCO2分别为 -3.4和 -0.8 mmHg;MCAV分别为 -10.4和 -3.9 cm/s;P分别为0.002和0.011)。控制呼吸对胸部出汗或前臂血管传导没有显著影响(P分别为0.67和0.91)。我们的结果表明,人类在长时间运动期间能够自主抑制体温过高导致的通气过度,并且这种抑制减轻了PaCO2和CBF的变化。

相似文献

1
Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.
Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R669-79. doi: 10.1152/ajpregu.00419.2014. Epub 2015 Jan 28.
3
Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans.
J Appl Physiol (1985). 2018 Jan 1;124(1):225-233. doi: 10.1152/japplphysiol.00232.2017. Epub 2017 Sep 28.
4
Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.
J Appl Physiol (1985). 2015 Sep 1;119(5):435-44. doi: 10.1152/japplphysiol.01049.2014. Epub 2015 Jul 9.
5
Effect of voluntary hypocapnic hyperventilation on cutaneous circulation in resting heated humans.
Am J Physiol Regul Integr Comp Physiol. 2012 Nov 1;303(9):R975-83. doi: 10.1152/ajpregu.00169.2012. Epub 2012 Sep 12.
6
Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans.
J Appl Physiol (1985). 2014 Dec 1;117(11):1317-24. doi: 10.1152/japplphysiol.00334.2014. Epub 2014 Sep 25.
7
Adaptation of exercise ventilation during an actively-induced hyperthermia following passive heat acclimation.
Am J Physiol Regul Integr Comp Physiol. 2009 Sep;297(3):R605-14. doi: 10.1152/ajpregu.90672.2008. Epub 2009 Jun 3.
8
Effect of hypohydration on hyperthermic hyperpnea and cutaneous vasodilation during exercise in men.
J Appl Physiol (1985). 2008 Nov;105(5):1509-18. doi: 10.1152/japplphysiol.01206.2007. Epub 2008 Sep 11.
9
Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration.
J Appl Physiol (1985). 2008 Aug;105(2):433-45. doi: 10.1152/japplphysiol.00010.2008. Epub 2008 May 15.
10
Caffeine Exacerbates Hyperventilation and Reductions in Cerebral Blood Flow in Physically Fit Men Exercising in the Heat.
Med Sci Sports Exerc. 2021 Apr 1;53(4):845-852. doi: 10.1249/MSS.0000000000002537.

引用本文的文献

1
Ice Slurry Mitigates Hyperventilation and Cerebral Hypoperfusion, and May Enhance Endurance Performance in the Heat.
Med Sci Sports Exerc. 2025 Jul 1;57(7):1488-1500. doi: 10.1249/MSS.0000000000003662. Epub 2025 Feb 3.
5
Middle cerebral artery blood flow velocity during a 4 km cycling time trial.
Eur J Appl Physiol. 2017 Jun;117(6):1241-1248. doi: 10.1007/s00421-017-3612-2. Epub 2017 Apr 13.
6
Characteristics of hyperthermia-induced hyperventilation in humans.
Temperature (Austin). 2016 Feb 18;3(1):146-60. doi: 10.1080/23328940.2016.1143760. eCollection 2016 Jan-Mar.
7
Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females.
Am J Physiol Regul Integr Comp Physiol. 2015 Oct 15;309(8):R912-9. doi: 10.1152/ajpregu.00261.2015. Epub 2015 Aug 19.

本文引用的文献

1
Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans.
J Physiol. 2014 Jul 15;592(14):3143-60. doi: 10.1113/jphysiol.2014.272104. Epub 2014 May 16.
2
Regional changes in brain blood flow during severe passive hyperthermia: effects of PaCO2 and extracranial blood flow.
J Appl Physiol (1985). 2013 Sep 1;115(5):653-9. doi: 10.1152/japplphysiol.00394.2013. Epub 2013 Jul 3.
3
Effect of voluntary hypocapnic hyperventilation on cutaneous circulation in resting heated humans.
Am J Physiol Regul Integr Comp Physiol. 2012 Nov 1;303(9):R975-83. doi: 10.1152/ajpregu.00169.2012. Epub 2012 Sep 12.
4
Comparison of hyperthermic hyperventilation during passive heating and prolonged light and moderate exercise in the heat.
J Appl Physiol (1985). 2012 Nov;113(9):1388-97. doi: 10.1152/japplphysiol.00335.2012. Epub 2012 Aug 23.
5
Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.
J Appl Physiol (1985). 2012 Jul;113(2):237-45. doi: 10.1152/japplphysiol.01199.2011. Epub 2012 May 17.
6
Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat.
Am J Physiol Regul Integr Comp Physiol. 2012 Jan 1;302(1):R94-R102. doi: 10.1152/ajpregu.00048.2011. Epub 2011 Sep 28.
7
Reductions in cerebral blood flow during passive heat stress in humans: partitioning the mechanisms.
J Physiol. 2011 Aug 15;589(Pt 16):4053-64. doi: 10.1113/jphysiol.2011.212118. Epub 2011 Jun 20.
8
Short-term exercise-heat acclimation enhances skin vasodilation but not hyperthermic hyperpnea in humans exercising in a hot environment.
Eur J Appl Physiol. 2012 Jan;112(1):295-307. doi: 10.1007/s00421-011-1980-6. Epub 2011 May 6.
9
Effect of CO₂ on the ventilatory sensitivity to rising body temperature during exercise.
J Appl Physiol (1985). 2011 May;110(5):1334-41. doi: 10.1152/japplphysiol.00010.2010. Epub 2011 Mar 10.
10
The Influence of High Air Temperatures: No. 1.
J Hyg (Lond). 1905 Oct;5(4):494-513. doi: 10.1017/s0022172400006811.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验