Calandria J M, Asatryan A, Balaszczuk V, Knott E J, Jun B K, Mukherjee P K, Belayev L, Bazan N G
Neuroscience Center of Excellence, School of Medicine, LSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
Cell Death Differ. 2015 Aug;22(8):1363-77. doi: 10.1038/cdd.2014.233. Epub 2015 Jan 30.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived mediator, induces cell survival in uncompensated oxidative stress (OS), neurodegenerations or ischemic stroke. The molecular principles underlying this protection remain unresolved. We report here that, in retinal pigment epithelial cells, NPD1 induces nuclear translocation and cREL synthesis that, in turn, mediates BIRC3 transcription. NPD1 activates NF-κB by an alternate route to canonical signaling, so the opposing effects of TNFR1 and NPD1 on BIRC3 expression are not due to interaction/s between NF-κB pathways. RelB expression follows a similar pattern as BIRC3, indicating that NPD1 also is required to activate cREL-mediated RelB expression. These results suggest that cREL, which follows a periodic pattern augmented by the lipid mediator, regulates a cluster of NPD1-dependent genes after cREL nuclear translocation. BIRC3 silencing prevents NPD1 induction of survival against OS. Moreover, brain NPD1 biosynthesis and selective neuronal BIRC3 abundance are increased by DHA after experimental ischemic stroke followed by remarkable neurological recovery. Thus, NPD1 bioactivity governs key counter-regulatory gene transcription decisive for retinal and brain neural cell integrity when confronted with potential disruptions of homeostasis.
神经保护素D1(NPD1)是一种源自二十二碳六烯酸(DHA)的介质,可在未代偿的氧化应激(OS)、神经退行性变或缺血性卒中中诱导细胞存活。这种保护作用背后的分子机制仍未明确。我们在此报告,在视网膜色素上皮细胞中,NPD1可诱导核转位和cREL合成,进而介导BIRC3转录。NPD1通过一条不同于经典信号通路的途径激活核因子κB(NF-κB),因此TNFR1和NPD1对BIRC3表达的相反作用并非由于NF-κB信号通路之间的相互作用。RelB的表达模式与BIRC3相似,表明NPD1也需要激活cREL介导的RelB表达。这些结果表明,cREL在脂质介质增强的周期性模式之后,在cREL核转位后调节一组NPD1依赖性基因。BIRC3沉默可阻止NPD1诱导的针对OS的存活。此外,实验性缺血性卒中后,DHA可增加脑内NPD1的生物合成以及选择性神经元中BIRC3的丰度,随后神经功能显著恢复。因此,当面对内环境稳态的潜在破坏时,NPD1的生物活性决定了对视网膜和脑神经元细胞完整性起关键作用的反调节基因转录。