Department of Chemistry, University of Wisconsin-Madison , 1101 University Ave., Madison, Wisconsin 53706, United States.
Nano Lett. 2015 Feb 11;15(2):1421-7. doi: 10.1021/nl504872s. Epub 2015 Feb 2.
We report the controlled synthesis of NiCo layered double hydroxide (LDH) nanoplates using a newly developed high temperature high pressure hydrothermal continuous flow reactor (HCFR), which enables direct growth onto conductive substrates in high yield and, most importantly, better control of the precursor supersaturation and, thus, nanostructure morphology and size. The solution coordination chemistry of metal-ammonia complexes was utilized to synthesize well-defined NiCo LDH nanoplates directly in a single step without topochemical oxidation. The as-grown NiCo LDH nanoplates exhibit a high catalytic activity toward the oxygen evolution reaction (OER). By chemically exfoliating LDH nanoplates to thinner nanosheets, the catalytic activity can be further enhanced to yield an electrocatalytic current density of 10 mA cm(-2) at an overpotential of 367 mV and a Tafel slope of 40 mV dec(-1). Such enhancement could be due to the increased surface area and more exposed active sites. X-ray photoelectron spectroscopy (XPS) suggests the exfoliation also caused some changes in electronic structure. This work presents general strategies to controllably grow nanostructures of LDH and ternary oxide/hydroxides in general and to enhance the electrocatalytic performance of layered nanostructures by exfoliation.
我们使用新开发的高温高压水热连续流反应器 (HCFR) 来控制合成 NiCo 层状双氢氧化物 (LDH) 纳米板,该反应器能够在高产率的情况下直接在导电衬底上生长,最重要的是,更好地控制前体过饱和度,从而控制纳米结构的形态和尺寸。我们利用金属-氨络合物的溶液配位化学,在无需进行拓扑氧化的情况下,直接一步合成具有良好定义的 NiCo LDH 纳米板。所生长的 NiCo LDH 纳米板对析氧反应 (OER) 表现出高催化活性。通过将 LDH 纳米板化学剥离成更薄的纳米片,可以进一步提高催化活性,在 367 mV 的过电势下产生 10 mA cm(-2) 的电流密度和 40 mV dec(-1) 的塔菲尔斜率。这种增强可能是由于增加了表面积和更多暴露的活性位点。X 射线光电子能谱 (XPS) 表明,剥离还导致了电子结构的一些变化。这项工作提出了一般策略来控制 LDH 和三元氧化物/氢氧化物的纳米结构的生长,并通过剥离来提高层状纳米结构的电催化性能。