Suppr超能文献

Decrease of anion selectivity caused by mutation of Thr501 and Gly502 to Glu in the hydrophobic domain of the colicin E1 channel.

作者信息

Shirabe K, Cohen F S, Xu S, Peterson A A, Shiver J W, Nakazawa A, Cramer W A

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.

出版信息

J Biol Chem. 1989 Feb 5;264(4):1951-7.

PMID:2563369
Abstract

Structure-function relations of the colicin E1 ion channel were studied through the effects of mutations in the 35-residue hydrophobic region of the channel polypeptide and neighboring residues in the channel domain. Mutation of neutral residues threonine 501 and glycine 502 to a more polar or charged glutamic acid generated a protein whose channel conductance properties in each case had a decreased selectivity for anions. There was no significant effect on ion selectivity caused by mutations that changed residue charge outside the hydrophobic domain at the neighboring aspartic acid 509 or at glycine 439. The Thr501----Glu and Gly502----Glu mutants possessed lower cytotoxic and in vitro activity. An altered thermolysin cleavage pattern and a greater binding to membrane vesicles at pH greater than 4.5 of the Gly502----Glu mutant indicated greater exposure of its COOH-terminal hydrophobic domain in solution. It is concluded that the hydrophobic nature of threonine 501 and glycine 502 is important in the structure of the channel lumen and the soluble colicin. Altering proline 462, a residue conserved in five sequenced channel-forming colicins, had no significant effect on channel properties. These conclusions are discussed in the context of sequence-structure-function concepts for channel proteins.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验