Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Physical Chemistry and Applied Spectroscopy Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Science. 2015 Jan 30;347(6221):522-5. doi: 10.1126/science.aaa0472.
State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
最先进的光伏技术使用高纯度、大面积、晶圆级的单晶半导体,这些半导体是通过复杂的高温晶体生长工艺生长的。我们展示了一种基于溶液的热浇铸技术,用于生长具有毫米级晶畴的连续、无针孔的有机金属钙钛矿薄膜。我们制造的平面太阳能电池的效率接近 18%,且电池之间的差异很小。这些器件表现出无滞后的光伏响应,这一直是钙钛矿器件稳定运行的基本瓶颈。特性分析和建模表明,在晶粒较大的器件中,由于体缺陷减少和载流子迁移率提高,从而改善了性能。我们预计,这项技术将引领该领域合成晶圆级的钙钛矿晶体,这对于制造高效太阳能电池是必要的,并且适用于其他几个受到溶液处理薄膜中多分散性、缺陷和晶粒间复合影响的材料体系。