Jia Weiwen, Zhou Bin, Lu Xin, Xu Xiaoke
School of Journalism and Communication, Beijing Normal University, Beijing, 100875, China.
Computational Communication Research Center, Beijing Normal University, Zhuhai, Guangdong, 519087, China.
Sci Rep. 2025 Aug 29;15(1):31916. doi: 10.1038/s41598-025-16663-5.
Although privacy protection is increasingly important in the digital age, current measures predominantly focus on safeguarding high-sensitivity data, often overlooking the risks associated with low-sensitivity data. Here, we utilize low-sensitivity anonymous interaction data, which depict the behavioral interaction patterns between users and their contacts, to construct multidimensional social signature for identifying users in anonymous datasets. We investigate the potential of low-sensitivity social signature for user identification and propose a classification framework for measuring feature sensitivity levels. Among the test datasets, the accuracy of user identification can reach up to 87% in email communication, and remains wide applicability across different datasets. This suggests that even anonymous low-sensitivity interaction data should be considered personal data warranting protection under existing data protection regulations. We challenge the efficacy of current data anonymization methods and offer new perspectives on low-sensitivity data privacy protection through our feature sensitivity classification framework.
尽管隐私保护在数字时代愈发重要,但当前措施主要聚焦于保护高敏感度数据,常常忽视与低敏感度数据相关的风险。在此,我们利用低敏感度匿名交互数据(这些数据描绘了用户与其联系人之间的行为交互模式)来构建多维度社会特征,以在匿名数据集中识别用户。我们研究低敏感度社会特征用于用户识别的潜力,并提出一个用于衡量特征敏感度水平的分类框架。在测试数据集中,电子邮件通信中用户识别的准确率可达87%,并且在不同数据集上仍具有广泛适用性。这表明,即使是匿名的低敏感度交互数据,根据现有数据保护法规也应被视为需要保护的个人数据。我们对当前数据匿名化方法的有效性提出质疑,并通过我们的特征敏感度分类框架为低敏感度数据隐私保护提供新视角。