Suppr超能文献

从稀疏数据中稳健地重建复杂网络。

Robust reconstruction of complex networks from sparse data.

机构信息

School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China.

出版信息

Phys Rev Lett. 2015 Jan 16;114(2):028701. doi: 10.1103/PhysRevLett.114.028701. Epub 2015 Jan 14.

Abstract

Reconstructing complex networks from measurable data is a fundamental problem for understanding and controlling collective dynamics of complex networked systems. However, a significant challenge arises when we attempt to decode structural information hidden in limited amounts of data accompanied by noise and in the presence of inaccessible nodes. Here, we develop a general framework for robust reconstruction of complex networks from sparse and noisy data. Specifically, we decompose the task of reconstructing the whole network into recovering local structures centered at each node. Thus, the natural sparsity of complex networks ensures a conversion from the local structure reconstruction into a sparse signal reconstruction problem that can be addressed by using the lasso, a convex optimization method. We apply our method to evolutionary games, transportation, and communication processes taking place in a variety of model and real complex networks, finding that universal high reconstruction accuracy can be achieved from sparse data in spite of noise in time series and missing data of partial nodes. Our approach opens new routes to the network reconstruction problem and has potential applications in a wide range of fields.

摘要

从可测量的数据中重建复杂网络是理解和控制复杂网络系统集体动力学的一个基本问题。然而,当我们试图从有限数量的数据中解码隐藏的结构信息时,会面临一个重大的挑战,这些数据伴随着噪声,并且存在不可访问的节点。在这里,我们开发了一个从稀疏和嘈杂的数据中稳健重建复杂网络的通用框架。具体来说,我们将重建整个网络的任务分解为恢复每个节点中心的局部结构。因此,复杂网络的自然稀疏性确保了从局部结构重建到稀疏信号重建问题的转换,而稀疏信号重建问题可以通过使用套索(lasso)这一凸优化方法来解决。我们将我们的方法应用于进化博弈、交通和通信过程,这些过程发生在各种模型和真实的复杂网络中,结果发现,即使时间序列存在噪声且部分节点的数据缺失,也可以从稀疏数据中实现普遍的高重建精度。我们的方法为网络重建问题开辟了新的途径,并在广泛的领域具有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验