重构网络公共品博弈中的直接和间接互动。
Reconstructing direct and indirect interactions in networked public goods game.
作者信息
Han Xiao, Shen Zhesi, Wang Wen-Xu, Lai Ying-Cheng, Grebogi Celso
机构信息
School of Systems Science, Beijing Normal University, Beijing, 100875, P. R. China.
Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
出版信息
Sci Rep. 2016 Jul 22;6:30241. doi: 10.1038/srep30241.
Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.
网络重构是理解许多具有未知相互作用结构的复杂系统的一个基本问题。在许多复杂系统中,两个个体之间存在间接相互作用,它们没有直接连接,但有共同的邻居。尽管网络重构最近取得了进展,但我们仍然缺乏一种用于重构具有间接相互作用的复杂网络的方法。在这里,我们引入一种两步策略来解决重构问题,在第一步中,我们通过使用套索回归来解决稀疏信号重构问题,从而恢复直接和间接相互作用,在第二步中,我们使用矩阵变换和优化来区分直接和间接相互作用。与直接相互作用相对应的网络结构可以被完全揭示。我们利用在复杂网络上发生的公共物品博弈作为表征间接相互作用的范例,并测试我们的重构方法。我们发现,对于同构和异构网络,以及尽管数据测量不足且受噪声污染的一些实证网络,都可以实现高重构精度。尽管仍然缺乏用于重构具有任意类型间接相互作用的复杂网络的通用框架,但我们的方法为在一个具有代表性的复杂系统中分离直接和间接相互作用开辟了新途径。