Department of Data Analytics and Digitalisation, Maastricht University, Tongersestraat 53, 6211 LM, Maastricht, The Netherlands.
Department of Network and Data Science, Central European University, 1100, Vienna, Austria.
Nat Commun. 2022 Nov 10;13(1):6794. doi: 10.1038/s41467-022-34267-9.
The number of network science applications across many different fields has been rapidly increasing. Surprisingly, the development of theory and domain-specific applications often occur in isolation, risking an effective disconnect between theoretical and methodological advances and the way network science is employed in practice. Here we address this risk constructively, discussing good practices to guarantee more successful applications and reproducible results. We endorse designing statistically grounded methodologies to address challenges in network science. This approach allows one to explain observational data in terms of generative models, naturally deal with intrinsic uncertainties, and strengthen the link between theory and applications.
网络科学在许多不同领域的应用数量正在迅速增加。令人惊讶的是,理论和特定领域应用的发展往往是孤立的,这使得理论和方法上的进展与网络科学在实践中的应用之间存在着有效的脱节。在这里,我们建设性地应对这一风险,讨论了确保更成功的应用和可重复结果的良好实践。我们支持设计基于统计学的方法来解决网络科学中的挑战。这种方法允许人们根据生成模型来解释观测数据,自然地处理内在的不确定性,并加强理论和应用之间的联系。