Suppr超能文献

一个用于量化海洋病毒对微生物食物网和生态系统过程影响的多营养级模型。

A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes.

作者信息

Weitz Joshua S, Stock Charles A, Wilhelm Steven W, Bourouiba Lydia, Coleman Maureen L, Buchan Alison, Follows Michael J, Fuhrman Jed A, Jover Luis F, Lennon Jay T, Middelboe Mathias, Sonderegger Derek L, Suttle Curtis A, Taylor Bradford P, Frede Thingstad T, Wilson William H, Eric Wommack K

机构信息

1] School of Biology, Georgia Institute of Technology, Atlanta, GA, USA [2] School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.

Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA.

出版信息

ISME J. 2015 Jun;9(6):1352-64. doi: 10.1038/ismej.2014.220. Epub 2015 Jan 30.

Abstract

Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.

摘要

微生物宿主的病毒裂解会释放出有机物质,这些有机物质随后可被非靶向微生物吸收。20世纪90年代末首次建立的海水中病毒介导的碳循环定量估计,最初是根据海洋宿主和病毒密度、宿主碳含量以及推断的病毒裂解率推断出来的。然而,这些估计并没有明确纳入与病毒介导的裂解相关的一系列复杂反馈。为了评估病毒在塑造群落结构和生态系统功能中的作用,我们扩展了动态多营养生态系统模型,以纳入病毒成分,并针对海洋真光层中发生的过程进行了具体参数化。至关重要的是,我们能够通过解析求解这个模型,便于评估在许多替代参数化下的模型行为。分析表明,添加病毒成分促进了复杂群落的出现。此外,新兴多营养群落的生物量分配与表层海洋中已确立的经验规范一致。在稳态下,可以探究生态系统通量,以表征与假定的无病毒海洋表层生态系统相比病毒所产生的影响。该模型表明,有病毒的生态系统将具有:(1)增加的有机物质循环;(2)减少向更高营养级的转移;(三)提高净初级生产力。这些模型结果支持了病毒可以在整个生态系统尺度上产生显著刺激作用的假设。我们认为,现有的在不考虑病毒影响的情况下预测碳和养分循环的努力,很可能会忽略调节全球生物地球化学循环的海洋食物网的基本特征。

相似文献

4
Microbial structuring of marine ecosystems.海洋生态系统的微生物结构
Nat Rev Microbiol. 2007 Oct;5(10):782-91. doi: 10.1038/nrmicro1747.
6
Climate change undermines the global functioning of marine food webs.气候变化破坏了海洋食物网的全球功能。
Glob Chang Biol. 2020 Mar;26(3):1306-1318. doi: 10.1111/gcb.14944. Epub 2020 Jan 10.
9
Marine viruses and global climate change.海洋病毒与全球气候变化。
FEMS Microbiol Rev. 2011 Nov;35(6):993-1034. doi: 10.1111/j.1574-6976.2010.00258.x. Epub 2011 Jan 4.
10
Virus-mediated archaeal hecatomb in the deep seafloor.病毒介导的深海海底古菌大灭绝。
Sci Adv. 2016 Oct 12;2(10):e1600492. doi: 10.1126/sciadv.1600492. eCollection 2016 Oct.

引用本文的文献

6
Making sense of the virome in light of evolution and ecology.从进化和生态学角度理解病毒组。
Proc Biol Sci. 2025 Apr;292(2044):20250389. doi: 10.1098/rspb.2025.0389. Epub 2025 Apr 2.
10
The microbial phosphorus cycle in aquatic ecosystems.水生生态系统中的微生物磷循环。
Nat Rev Microbiol. 2025 Apr;23(4):239-255. doi: 10.1038/s41579-024-01119-w. Epub 2024 Nov 11.

本文引用的文献

3
Evolutionary comparison between viral lysis rate and latent period.病毒裂解率与潜伏期之间的进化比较。
J Theor Biol. 2014 Mar 21;345:32-42. doi: 10.1016/j.jtbi.2013.12.006. Epub 2013 Dec 17.
8
Phage-bacteria infection networks.噬菌体-细菌感染网络。
Trends Microbiol. 2013 Feb;21(2):82-91. doi: 10.1016/j.tim.2012.11.003. Epub 2012 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验