Suppr超能文献

水体涡动相关法:量化由对搅拌敏感的氧气传感器引起的人工通量。

Aquatic eddy correlation: quantifying the artificial flux caused by stirring-sensitive O2 sensors.

作者信息

Holtappels Moritz, Noss Christian, Hancke Kasper, Cathalot Cecile, McGinnis Daniel F, Lorke Andreas, Glud Ronnie N

机构信息

Max-Planck-Institute for Marine Microbiology, Biogeochemistry Group, Bremen, Germany; MARUM-Center for Marine Environmental Science, University of Bremen, Bremen, Germany.

Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.

出版信息

PLoS One. 2015 Jan 30;10(1):e0116564. doi: 10.1371/journal.pone.0116564. eCollection 2015.

Abstract

In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2-70 mmol m(-2) d(-1) for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies.

摘要

在过去十年中,水生涡度相关(EC)技术已被证明是一种用于非侵入性测量沉积物-水界面氧气通量的强大方法。EC方法的基础是在同一采样体积中高频测量的湍流速度和氧气浓度波动的相关性。氧气浓度通常用快速响应的电化学微传感器测量。然而,由于其自身的氧气消耗,电化学微传感器对探头周围扩散边界层的变化敏感,因此对环境流速的变化也敏感。微传感器的所谓搅拌敏感性构成了流速与氧气传感之间的固有相关性,从而构成了一种可能混淆底栖通量测定的人为通量。为了评估人为通量,我们在没有任何氧气汇和源的密封环形水槽中测量了湍流速度与氧气微传感器信号之间的相关性。实验揭示了显著的相关性,即使对于设计为具有约0.7%低搅拌敏感性的传感器也是如此。人为通量取决于环境流动条件,而且与直觉相反的是,由于湍流速度波动的非线性贡献,在较高流速下人为通量会增加。对于弱湍流和非常强的湍流,测量到的人为通量分别为2-70 mmol m(-2) d(-1)。此外,搅拌敏感性取决于传感器相对于水流的方向。对于现场研究中通常使用的传感器方向,可以使用简化的数学模型预测人为通量。同时测试了不应表现出搅拌敏感性的光学微传感器(光极),结果表明O2信号与湍流之间没有任何显著相关性。总之,用电化学传感器获得的EC数据可能会受到人为通量的影响,我们建议在未来的EC研究中使用光学微传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f58/4312034/46a15eb485e5/pone.0116564.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验